Магнитный момент системы. Магнитные моменты электронов и атомов. Формулы для вычисления магнитного момента

Кикоин А.К. Магнитный момент тока //Квант. - 1986. - № 3. - С. 22-23.

По специальной договоренности с редколлегией и редакцией журнала "Квант"

Из курса физики девятого класса («Физика 9», § 88) известно, что на прямолинейный проводник длиной l с током I , если он помещен в однородное магнитное поле с индукцией \(~\vec B\), действует сила \(~\vec F\), равная по модулю

\(~F = BIl \sin \alpha\) ,

где α - угол между направлением тока и вектором магнитной индукции. Направлена эта сила перпендикулярно и полю, и току (по правилу левой руки).

Прямолинейный проводник - это только часть электрической цепи, поскольку электрический ток всегда замкнут. А как магнитное поле действует на замкнутый ток, точнее - на замкнутый контур с током?

На рисунке 1 в качестве примера показан контур в форме прямоугольной рамки со сторонами a и b , по которой в указанном стрелками направлении течет ток I .

Рамка помещена в однородное магнитное поле с индукцией \(~\vec B\) так, что в начальный момент вектор \(~\vec B\) лежит в плоскости рамки и параллелен двум ее сторонам. Рассматривая каждую из сторон рамки по отдельности, мы найдем, что на боковые стороны (длиной а ) действуют силы, равные по модулю F = BIa и направленные в противоположные стороны. На две другие стороны силы не действуют (для них sin α = 0). Каждая из сил F относительно оси, проходящей через середины верхней и нижней сторон рамки, создает момент силы (вращающий момент), равный \(~\frac{BIab}{2}\) (\(~\frac{b}{2}\) - плечо силы). Знаки моментов одинаковы (обе силы поворачивают рамку в одну сторону), так что общий вращающий момент М равен BIab , или, поскольку произведение ab равно площади S рамки,

\(~M = BIab = BIS\) .

Под действием этого момента рамка начнет поворачиваться (если смотреть сверху, то по часовой стрелке) и будет поворачиваться до тех пор, пока не станет своей плоскостью перпендикулярно вектору индукции \(~\vec B\) (рис. 2).

В этом положении сумма сил и сумма моментов сил равны нулю, и рамка находится в состоянии устойчивого равновесия. (На самом деле рамка остановится не сразу - в течение некоторого времени она будет совершать колебания около своего положения равновесия.)

Нетрудно показать (сделайте это самостоятельно), что в любом промежуточном положении, когда нормаль к плоскости контура составляет произвольный угол β с индукцией магнитного поля, вращающий момент равен

\(~M = BIS \sin \beta\) .

Из этого выражения видно, что при данном значении индукции поля и при определенном положении контура с током вращающий момент зависит только от произведения площади контура S на силу тока I в нем. Величину IS и называют магнитным моментом контура с током. Говоря точнее, IS - это модуль вектора магнитного момента. А направлен этот вектор перпендикулярно плоскости контура и притом так, что если мысленно вращать буравчик в направлении тока в контуре, то направление поступательного движения буравчика укажет направление магнитного момента. Например, магнитный момент контура, показанного на рисунках 1 и 2, направлен от нас за плоскость страницы. Измеряется магнитный момент в А·м 2 .

Теперь мы можем сказать, что контур с током в однородном магнитном поле устанавливается так, чтобы его магнитный момент «смотрел» в сторону того поля, которое вызвало его поворот.

Известно, что не только контуры с током обладают свойством создавать собственное магнитное поле и поворачиваться во внешнем поле. Такие же свойства наблюдаются и у намагниченного стержня, например у стрелки компаса.

Еще в 1820 году замечательный французский физик Ампер высказал идею о том, что сходство поведения магнита и контура с током объясняется тем, что в частицах магнита существуют замкнутые токи. Теперь известно, что в атомах и молекулах действительно есть мельчайшие электрические токи, связанные с движением электронов по своим орбитам вокруг ядер. Из-за этого атомы и молекулы многих веществ, например парамагнетиков, обладают магнитными моментами. Поворот этих моментов во внешнем магнитном поле и приводит к намагничиванию парамагнитных веществ.

Выяснилось и другое. Все частицы, входящие в состав атома, обладают также магнитными моментами, вовсе не связанными с какими-либо движениями зарядов, то есть с токами. Для них магнитный момент является таким же «врожденным» качеством, как заряд, масса и т. п. Магнитным моментом обладает даже частица, не имеющая электрического заряда,- нейтрон, составная часть атомных ядер. Магнитным моментом обладают поэтому и атомные ядра.

Таким образом, магнитный момент - одно из самых важных понятий в физике.

Известно, что магнитное поле оказывает ориентирующее действие на рамку с током, и рамка поворачивается вокруг своей оси. Происходит это потому, что в магнитном поле на рамку действует момент сил, равный:

Здесь В - вектор индукции магнитного поля, - ток в рамке, S - ее площадь и а - угол между силовыми линиями и перпендикуляром к плоскости рамки. В это выражение входит произведение , которое называют магнитным дипольным моментом или просто магнитным моментом рамки Оказывается, величина магнитного момента полностью характеризует взаимодействие рамки с магнитным полем. Две рамки, у одной из которых большой ток и малая площадь, а у другой - большая площадь и малый ток, будут вести себя в магнитном поле одинаково, если их магнитные моменты равны. Если рамка маленькая, то ее взаимодействие с магнитным полем не зависит от ее формы.

Удобно считать магнитный момент вектором, который расположен на линии, перпендикулярной плоскости рамки. Направление вектора (вверх или вниз вдоль этой линии) определяется «правилом буравчика»: буравчик нужно расположить перпендикулярно плоскости рамки и вращать по направлению тока рамки - направление движения буравчика укажет направление вектора магнитного момента.

Таким образом, магнитный момент - это вектор , перпендикулярный плоскости рамки.

Теперь наглядно представим поведение рамки в магнитном поле. Она будет стремиться развернуться так. чтобы ее магнитный момент был направлен вдоль вектора индукции магнитного поля В. Маленькую рамку с током можно использовать в качестве простейшего «измерительного прибора» для определения вектора индукции магнитного поля.

Магнитный момент - важное понятие в физике. В состав атомов входят ядра, вокруг которых вращаются электроны. Каждый движущийся вокруг ядра электрон как заряженная частица создает ток, образуя как бы микроскопическую рамку с током. Вычислим магнитный момент одного электрона, движущегося по круговой орбите радиуса г.

Электрический ток, т. е. величина заряда, которая переносится электроном на орбите за 1 с, равна заряду электрона е, помноженному на число совершаемых им оборотов :

Следовательно, величина магнитного момента электрона равна:

Можно выразить через величину момента импульса электрона . Тогда величина магнитного момента электрона, связанная с его движением по орбите, или, как говорят, величина орбитального магнитного момента, равна:

Атом - это объект, который нельзя описать с помощью классической физики: для таких малых объектов действуют совершенно иные законы - законы квантовой механики. Тем не менее результат, полученный для орбитального магнитного момента электрона, оказывается таким же, как и в квантовой механике.

Иначе дело обстоит с собственным магнитным моментом электрона - спином, который связан с его вращением вокруг своей оси. Для спина электрона квантовая механика дает величину магнитного момента, в 2 раза большую, чем классическая физика:

и это различие между орбитальным и спиновым магнитными моментами невозможно объяснить с классической точки зрения. Полный магнитный момент атома складывается из орбитальных и спиновых магнитных моментов всех электронов, а поскольку они отличаются в 2 раза, то в выражении для магнитного момента атома появляется множитель , характеризующий состояние атома:

Таким образом, атом, как и обычная рамка с током, обладает магнитным моментом, и во многом их поведение сходно. В частности, как и в случае классической рамки, поведение атома в магнитном поле полностью определяется величиной его магнитного момента. В связи с этим понятие магнитного момента очень важно при объяснении различных физических явлений, происходящих с веществом в магнитном поле.

Опыты Штерна и Герлаха

В $1921$ г. О. Штерн выдвинул идею опыта измерения магнитного момента атома. Данный эксперимент он выполнил в соавторстве с В. Герлахом в $1922$ г. Метод Штерна и Герлаха использует то, что пучок атомов (молекул) способен отклоняться в неоднородном магнитном поле. Атом, который имеет магнитный момент можно представить как элементарный магнит, имеющий малые, но конечные размеры. Если подобный магнит разместить в однородном магнитном поле, то он не испытывает силы. Поле будет действовать на северный и южный полюса такого магнита с силами, которые равны по модулю и противоположны по направлению. В результате, центр инерции атома будет покоиться или двигаться по прямой. (При этом ось магнита может совершать колебания или прецессировать). То есть, в однородном магнитном поле не возникает сил, которые действуют на атом и сообщают ему ускорение. Однородное магнитное поле не изменяет угол между направлениями индукции магнитного поля и магнитного момента атома.

Ситуация складывается иначе, если внешнее поле является неоднородным. В таком случае силы, которые действуют на северный и южный полюса магнита не равны. Результирующая сила, действующая на магнит отлична от нуля, и она сообщает атому ускорение, по полю или против него. Как результат, при перемещении в неоднородном поле рассматриваемый нами магнит отклонится от первоначального направления движения. При этом размер отклонения зависит от степени неоднородности поля. Для того, чтобы получить существенные отклонения поле должно резко изменяться уже в пределах длины магнита (линейные размеры атома $\approx {10}^{-8}см$). Такой неоднородности экспериментаторы добились с помощью конструкции магнита, который создавал поле. Один магнит в опыте имел вид лезвия, другой был плоским или обладал выемкой. Магнитные линии сгущались у «лезвия», так что напряженность в этой области была существенно больше, чем у плоского полюса. Тонкий пучок атомов пролетал между данными магнитами. Отдельные атомы отклонялись в созданном поле. Следы отдельных частиц наблюдались на экране.

Согласно представлениям классической физики в атомном пучке магнитные моменты имеют различные направления по отношению к некоторой оси $Z$. Что означает: проекция магнитного момента ($p_{mz}$) на данную ось принимает все значения интервала от $\left|p_m\right|$ до -$\left|p_m\right|$ (где $\left|p_{mz}\right|-$ модуль магнитного момента). На экране пучок должен получиться расширившимся. Однако, в квантовой физике, если учесть квантование, то возможными становятся не все ориентации магнитного момента, а только конечное их количество. Так, на экране след пучка атомов получался расщепленным на некоторое число отдельных следов.

Поставленные эксперименты показали, что например, пучок атомов лития расщепился на $24$ пучка. Это является обоснованным, так как основной термом $Li - 2S$ -- терм (один валентный электрон, имеющий спин $\frac{1}{2}\ $ на s --орбите, $l=0).$ По размерам расщепления можно сделать вывод о величине магнитного момента. Так Герлах получил доказательство того, что спиновый магнитный момент равен магнетону Бора. Исследования разных элементов показали полное согласование с теорией.

Штерн и Раби измерили магнитные моменты ядер, применяя данный подход.

Итак, если проекция $p_{mz}$ квантована, вместе с ней квантована средняя сила, которая действует на атом со стороны магнитного поля. Опыты Штерна и Герлаха доказали квантование проекции магнитного квантового числа на ось $Z$. Получилось, что магнитные моменты атомов направлены параллельно оси $Z$, под углом к данной оси они направлены быть не могут, так пришлось принять то, что ориентация магнитных моментов относительно магнитного поля изменяется дискретно. Данное явление было названо пространственным квантованием. Дискретность не только состояния атомов, но и ориентировок магнитных моментов атома во внешнем поле -- принципиально новое свойство перемещения атомов.

Полностью опыты были объяснены после открытия спина электрона , когда получили то, что магнитный момент атома вызван не орбитальным моментом электрона, а внутренним магнитным моментом частицы, который связан с его внутренним механическим моментом (спином).

Расчет движения магнитного момента в неоднородном поле

Пусть атом движется в неоднородном магнитном поле, его магнитный момент равен ${\overrightarrow{p}}_m$. На него действует сила:

Вцелом, атом является электрически нейтральной частицей, поэтому другие силы на него в магнитном поле не действуют. Исследуя движение атома в неоднородном поле можно измерить его магнитный момент. Допустим, что атом перемещается по оси $X$, неоднородность поля создана в направлении оси $Z$ (рис.1):

Рисунок 1.

\frac{}{}\frac{}{}

Используя условия (2) выражение (1) преобразуем к виду:

Магнитное поле симметрично относительно плоскости y=0. Можно предположить, что атом перемещается в данной плоскости, значит $B_x=0.$ Равенство $B_y=0$ нарушается только в небольших областях у краев магнита (этим нарушением пренебрегаем). Из выше сказанного следует, что:

В таком случае выражения (3) имеют вид:

Прецессия атомов в магнитном поле не влияет на $p_{mz}$. Уравнение движения атома в пространстве между магнитами запишем в виде:

где $m$ -- масса атома. Если атом проходит путь $a$ между магнитами, то он отклоняется от оси X на расстояние, равное:

где $v$ -- скорость атома по оси $X$. Уходя из пространства между магнитами атом продолжает перемещаться под неизменным по отношению к оси $X$ углом по прямой. В формуле (7) величины $\frac{\partial B_z}{\partial z}$, $a$, $v\ и\ m$ известны, измерив z можно сосчитать $p_{mz}$.

Пример 1

Задание: На сколько компонент, при проведении опыта аналогичного опыту Штерна и Герлаха, произойдёт расщепление пучка атомов, если они находятся в состоянии ${}^3{D_1}$?

Решение:

Терм расщепляется на $N=2J+1$ подуровней, если множитель Ланде $g\ne 0$, где

Для нахождения числа компонент, на которое расщепится пучок атомов, нам следует определить полное внутреннее квантовое число $(J)$, мультиплетность $(S)$, орбитальное квантовое число, сравнить множитель Ланде с нулем и если он отличен от нуля, то вычислить число подуровней.

1) Для этого рассмотрим структуру символической записи состояния атома ($3D_1$). Наш терм расшифруется следующим образом: символу $D$ соответствует орбитальное квантовое число $l=2$, $J=1$, мультиплетность $(S)$ равна $2S+1=3\to S=1$.

Вычислим $g,$ применив формулу (1.1):

Количество компонент, на которые расщепится пучок атомов, равен:

Ответ: $N=3.$

Пример 2

Задание: Почему в опыте Штерна и Герлаха по обнаружению спина электрона применяли пучок атомов водорода, которые находились в $1s$ состоянии?

Решение:

В $s-$ состоянии момент импульса электрона $(L)$ равен нулю, так как $l=0$:

Магнитный момент атома, который связан с движением электрона по орбите, пропорционален механическому моменту:

\[{\overrightarrow{p}}_m=-\frac{q_e}{2m}\overrightarrow{L}(2.2)\]

следовательно, равен нулю. Это означает, что магнитное поле не должно влиять на перемещение атомов водорода в основном состоянии, то есть расщеплять поток частиц. Но при использовании спектральных приборов было показано, что линии спектра водорода проявляют наличие тонкую структуру (дублеты) даже если магнитного поля нет. Для того, чтобы объяснить наличие тонко структуры и была выдвинута идея собственного механического момента импульса электрона в пространстве (спина).

  • 6. Работа электрических сил. Потенциал электростатического поля.
  • 7. Градиент электрического потенциала и вектор е. Силовые линии поля. Эквипотенциальные поверхности.
  • 8.Диполь в электрическом поле. Поле диполя. Момент сил, действующих на диполь. Энергия диполя в роле.
  • 9.Поле внутри проводника и у его поверхности. Свойства замкнутой проводящей оболочки. Электростатическая защита.
  • 10. Классическая теория электропроводности металлов. Пределы её применимости.
  • 11.Электрический ток в вакууме и газах. Несамостоятельный и самостоятельный газовый разряд.
  • 12. Электрический ток в жидкостях. Законы электролиза Фарадея.
  • 13. Электроёмкость уединённого проводника. Ёмкость проводника, имеющёго форму шара радиусом r. Единица ёмкости
  • 14. Параллельное и последовательное соединение конденсаторов. Ёмкость плоского, цилиндрического и сферического конденсаторов.
  • 15. Электростатическое поле в диэлектрике. Полярные и неполярные диэлектрики.
  • 16)Диэлектрическая восприимчивость. Свободные и связные заряды.
  • Зависимость от времени
  • 17)Электрическая индукция. Теорема Гаусса для поля вектора d. Дифференциальная форма теоремы.
  • 18) Связь между векторами d и e. Диэлектрическая проницаемость.
  • 19) Граничные условия для векторов e и d. Преломление линий e и d. Поле в однородном диэлектрике.
  • 20) Энергия взаимодействия системы точечных зарядов; зарядов распределенных непрерывно по объему и по поверхности
  • 21) Энергия уединенного проводника. Энергия конденсатора.
  • 22) Плотность энергии электрического поля (на примере плоского конденсатора)
  • 23) Постоянный ток. Единица измерения. Плотность тока. Уравнение непрерывности
  • 24)Диффиринциальная форма ур-я непрывности. Условие стационарности.
  • 25) Сторонние силы. Эдс. Напряжение. Обобщенный закон Ома.
  • 26) Закон Ома для замкнутой цепи, участка цепи, содержащего эдс.
  • 27) Дифференциальная форма закона Ома.
  • 28) Разветвленные цепи. Правила Кирхгофа
  • 29) Закон Джоуля-Ленца. Дифференциальная форма закона Джоуля-Ленца
  • 30. Магнитное поле. Сила Лоренца. Сила Ампера.
  • 32.Магнитное поле прямолинейного тока,кругового тока.Сила взаимодействия прямолинейных токов.
  • 2. Магнитное поле в центре кругового проводника с током.
  • 33.Дивергенция, циркуляция, ротор и поток магнитной индукции.
  • 34.Графическое представление поля в. Теорема Гаусса для поля в.
  • 35.Закон полного тока. Потенциальные и соленоидные векторные поля
  • 36.Магнитное поле прямого тока, бесконечного соленоида, тороида.
  • 37.Дифференциальная форма основных законов магнитного поля. Дивергенция и ротор поля b.
  • 38.Магнитный момент. Силы, действующие на магнитный момент и его энергия в магнитном поле.
  • 39. Работа по перемещению проводника и контура с током в магнитном поле.
  • 40.Движение заряженных частиц в электрическом и магнитном поле.Эффект Холла.
  • 41. Магнитные свойства вещества. Пара-, диа-, ферро-, ферри- и антиферромагнетики.
  • 42. Опыт Эйнштейна – де Гааза. Опыт Барнета. Магнетомеханическое отношение спин электрона.
  • 43. Магнитная восприимчивость и проницаемость. Намагничивание вещества. Напряжённость магнитного поля.
  • 44. Закон электромагнитной индукции Фарадея. Правило Ленца.
  • 45. Природа электромагнитной индукции. Вихревое электрическое поле.
  • 46. Способы измерения индукции магнитного потока. Единица измерения магнитного потока.
  • 48. Взаимная индукция. Теорема взаимности.
  • 49. Потенциальные и соленоидальные векторные поля. Необходимое и достаточное условие потенциальности векторного поля.
  • 50. Энергия магнитного поля. Изолированный контур с током.
  • 51. Магнитная энергия тока. Плотность энергии магниного поля. Энергия соленоида.
  • 52. Переменный ток. Конденсатор, индуктивность и сопротивление в цепи переменного тока.
  • 54. Колебательный контур. Свободные и затухающие колебания.
  • 55. Вынужденные колебания. Резонанс.
  • 56. Уравнение Максвелла. Интегральная и дифференциальная форма уравнений. Вектор Пойнтинга. Физический смысл уравнений Максвелла.
  • 57. Ток смещения. Закон сохранения энергии для электромагнитного поля.
  • 58. Электормагнитные волны. Волновое уравнение. Поляризация. Плоские, сферические и цилиндрические волны.
  • 59. Проводимость полупроводников. Элементы зонной теории кристаллов.
  • 60. Собственные и примесные полупроводники. Дрейфовый и диффузные токи. P-n переходы.
  • 38.Магнитный момент. Силы, действующие на магнитный момент и его энергия в магнитном поле.

    Магнитный момент элементарных частиц (электронов, протонов, нейтронов и других), как показала квантовая механика, обусловлен существованием у них собственного механического момента - спина.

    Магнитный момент измеряется в А⋅м 2 или Дж/Тл (СИ).

    В случае плоского контура с электрическим током магнитный момент вычисляется как , где I - сила тока в контуре, S - площадь контура, - единичный вектор нормали к плоскости контура. Направление магнитного момента обычно находится по правилу буравчика: если вращать ручку буравчика в направлении тока, то направление магнитного момента будет совпадать с направлением поступательного движения буравчика.

    Для произвольного замкнутого контура магнитный момент находится из:

    где - радиус-вектор проведенный из начала координат до элемента длины контура

    В общем случае произвольного распределения токов в среде:

    ,

    где - плотность тока в элементе объёма dV .

    орбитальным магнитным моментом (см. (109.2)) p m =IS n , модуль которого (131.1)

    где I = e - сила тока, - частота вращения электрона по орбите, S - площадь орбиты. Если электрон движется по часовой стрелке то ток направлен против часовой стрелки и вектор р m (в соответствии с правилом правого винта) направлен перпендикулярно плоскости орбиты электрона.

    Таким образом, общий магнитный момент атома (молекулы) p a равен векторной сумме магнитных моментов (орбитальных и спиновых) входящих в атом (молекулу) электронов:

    39. Работа по перемещению проводника и контура с током в магнитном поле.

    Сила, направление которой определяется по правилу левой руки, а значение - по закону Ампера (см. (111.2)), равна

    Под действием этой силы проводник переместится параллельно самому себе на отрезок dx из положения 1 в положение 2. Работа, совершаемая магнитным полем, равнатак как l dx = dS - площадь, пересекаемая проводником при его перемещении в маг­нитном поле, B dS= - поток вектора магнитной индукции, пронизывающий эту площадь. Таким образом,

    т. е. работа по перемещению проводника с током в магнитном поле равна произведе­нию силы тока на магнитный поток, пересеченный движущимся проводником. Получен­ная формула справедлива и для произвольного направления вектора В .

    работу, совершаемую силами Ампера, при конечном произвольном.перемещении контура в магнитном поле:(121.6) т. е. работа по перемещению замкнутого контура с током в магнитном поле равна произведению силы тока в контуре на изменение магнитного потока, сцепленного с контуром. Формула (121.6) остается справедливой для контура любой формы в про­извольном магнитном поле.

    40.Движение заряженных частиц в электрическом и магнитном поле.Эффект Холла.

    Для вывода общих закономерностей будем считать, что магнитное поле однородно и на частицы электрические поля не действуют. Если заряженная частица движется в магнитном поле со скоростью v вдоль линий магнитной индукции, то угол между векторами v и В равен 0 или . частица будет двигаться по окружности, радиус r которой определяется из условия QvB = mv 2 / r откуда (115.1)

    Период вращения частицы, т. е. время Т, за которое она совершает один полный оборот,

    Подставив сюда выражение (115.1),получим (115.2)

    т. е. период вращения частицы в однородном магнитном поле определяется только величиной, обратной удельному заряду (Q / m ) частицы, и магнитной индукцией поля, но не зависит от ее скорости (при v << c ). На этом основано действие циклических ускорителей заряженных частиц.

    Если скорость v заряженной частицы направлена под углом к вектору В . Шаг винтовой линии

    Подставив в последнее выражение (115.2), получим

    Направление, в котором закручивается спираль, зависит от знака заряда частицы.

    Эффект Холла (1879) - это возникновение в металле (или полупроводнике) с током плотностью j , помещенном в магнитное поле В , электрического поля в направлении, перпендикулярном В и j .

    где а - ширина пластинки,  - поперечная (холловская) разность потенциалов.

    Учитывая, что сила тока I = jS = nevS (S - площадь поперечного сечения пластинки толщиной d , п - концентрация электронов, v - средняя скорость упорядоченного движения электронов), получим

    R = 1/ (en ) - постоянная Холла , зависящая от вещества. По измеренному значе­нию постоянной Холла можно: 1) определить концентрацию носителей тока в провод­нике (при известных характере проводимости и заряда носителей); 2) судить о природе проводимости полупроводников (см. § 242, 243), так как знак постоянной Холла совпадает со знаком заряда е носителей тока. Эффект Холла поэтому - наиболее эффективный метод изучения энергетического спектра носителей тока в металлах и полупроводниках.

    Магнитный момент витка с током это физическая величина, как и любой другой магнитный момент, характеризует магнитные свойства данной системы. В нашем случае систему представляет круговой виток с током. Этот ток создает магнитное поле, которое взаимодействует с внешним магнитным полем. Это может быть как поле земли, так и поле постоянного или электромагнита.


    Рисунок 1 круговой виток с током

    Круговой виток с током можно представить в виде короткого магнита. Причем этот магнит будет направлен перпендикулярно плоскости витка. Расположение полюсов такого магнита определяется с помощью правила буравчика. Согласно которому северный плюс будет находиться за плоскостью витка, если ток в нем будет двигаться по часовой стрелке.

    Рисунок 2 Воображаемый полосовой магнит на оси витка

    На этот магнит, то есть на наш круговой виток с током, как и на любой другой магнит, будет воздействовать внешнее магнитное поле. Если это поле будет однородным, то возникнет вращающий момент, который будет стремиться развернуть виток. Поле буде поворачивать виток так чтобы его ось расположилась вдоль поля. При этом силовые линии самого витка, как маленького магнита, должны совпасть по направлению с внешним полем.

    Если же внешнее поле будет не однородным, то к вращающему моменту добавится и поступательное движение. Это движение возникнет вследствие того что участки поля с большей индукцией будут притягивать наш магнит в виде витка больше чем участки с меньшей индукцией. И виток начнет двигаться в сторону поля с большей индукцией.

    Величину магнитного момента кругового витка с током можно определить по формуле.

    Формула — 1 Магнитный момент витка

    Где, I ток протекающий по витку

    S площадь витка с током

    n нормаль к плоскости в которой находится виток

    Таким образом, из формулы видно, что магнитный момент витка это векторная величина. То есть кроме величины силы, то есть ее модуля он обладает еще и направлением. Данное свойство магнитный момент получил из-за того что в его состав входит вектор нормали к плоскости витка.

    Для закрепления материала можно провести несложный опыт. Для этого нам понадобится круговой виток, из медной проволоки подключённый к батареи питания. При этом подводящие провода должны быть достаточно тонкими и желательно свиты между собой. Это уменьшит их влияние на опыт.

    Рисунок

    Теперь подвесим виток на подводящих проводах в однородном магнитном поле, созданном скажем постоянными магнитами. Виток пока обесточен, и его плоскость располагается параллельно силовым линиям поля. При этом его ось и полюса воображаемого магнита будут перпендикулярны линиям внешнего поля.

    Рисунок

    При подаче тока на виток его плоскость повернется перпендикулярно силовым линиям постоянного магнита, а ось станет им параллельна. Причем направление поворота витка будет определяться правилом буравчика. А строго говоря, направлением, в котором течет ток по витку.

    

    Copyright © 2024 Наука. Техника. Экономика. Литература. Юриспруденция.