В какую фазу гаметогенеза происходит мейоз. Стадии мейоза. Медицинское значение понимания мейоза

Каждая клетка в организме человека имеет двойной набор хромосом - один от отца и один от матери. Его обозначают «2N» и называют диплоидным. В сперматозоиде и яйцеклетке содержится одинарный набор хромосом, обозначаемый «1N» и называемый гаплоидным.

Процесс образования гаплоидного набора из диплоидного, происходящий при формировании половых клеток, называют мейозом. В пересчёте на количество центромер происходит сначала редукционное деление (мейоз I), а затем эквационное деление (мейоз II). У мужчин мейоз проходит так же, как и у большинства диплоидных видов, а у женщин данный процесс имеет некоторые отличия.

Кроссинговер между хромосомами отца и матери обеспечивает перегруппировку генетической информации между поколениями. Во время оплодотворения происходит слияние гаплоидных наборов хромосом сперматозоида и яйцеклетки, таким образом в зиготе восстанавливается диплоидный набор.

Мейоз I

Мейоз I имеет много общего с митозом, однако это более сложный и продолжительный процесс.
первичных сперматоцитов и овоцитов начинается после фазы G2 митоза , а потому они имеют диплоидный набор хромосом (2N), содержащих реплицированную ДНК в составе сестринских хроматид (4С). Профаза I включает обоюдный обмен между хроматидами матери и отца при помощи крос-синговера.

Профаза I

Лептотена . Хромосомы представлены в виде длинных нитей, прикреплённых концами к ядерной оболочке.

Зиготена . Хромосомы сокращаются, образуют пары и гомологи слипаются друг с другом (синапсис). Данный процесс характеризует точное совмещение хромосом (ген к гену на протяжении всего генома). При этом у первичных сперматоцитов хромосомы X и Y образуют синапсис только концами своих коротких плечей.

Пахитена . Сестринские хроматиды начинают разделяться. Пары гомологичных хромосом, называемые бивалентами, имеют по четыре двойных спирали ДНК (тетрада). Одна или обе хроматиды каждой из отцовских хромосом скрещиваются с материнскими и образуют синаптонемальный комплекс. Каждая пара хромосом претерпевает хотя бы один кроссинговер.

Диплотена . Происходит разделение хроматид, за исключением участков кроссинговера, или хиазм. Хромосомы всех первичных овоцитов находятся в таком состоянии вплоть до овуляции.

Диакинез . Реорганизованные хромосомы начинают расходиться. В этот момент каждый бивалент содержит четыре хроматиды, соединённые обыкновенными центромерами, и несестринские хроматиды, соединённые хиазмами.

Метафаза I, анафаза 1, тепофаза 1, цитокинез I

Данные стадии мейоза подобны фазам митоза. Основное отличие: вместо разъединения несестринских хроматид происходит распределение по дочерним клеткам парных кроссоверных сестринских хроматид, соединённых центромерами.

В конце I вторичные сперматоциты и овоциты имеют 23 хромосомы (1N), каждая из которых состоит из двух хроматид (2С).

Мейоз II

При мейозе II возникает кратковременная интерфаза, во время которой не происходит репликации хромосом. Затем следуют профаза, метафаза, анафаза, телофаза и цитокинез. Схожесть каждой фазы мейоза II с подобной ей при митозе заключается в том, что пары хроматид (биваленты), соединённые в области центромер, выстраиваются в линию и образуют метафазную пластинку, а затем расходятся по дочерним клеткам, после чего следует репликация ДНК центромер.

В конце мейоза II в клетках содержится 23 хромосомы (IN), каждая из которых состоит из одной хроматиды (1С).


Мейоз у мужчин

Сперматогенезом называют процесс длительностью до 64 дней, включающий все стадии, на протяжении которых сперматогоний превращается в сперматозоид. При этом цитокинез остаётся незавершённым, позволяя каждому поколению клеток быть связанным цитоплазматическими мостиками.

После того как диплоидный первичный сперматоцит проходит стадию мейоза I, возникают два гаплоидных вторичных сперматоцита. Затем следует мейоз II, в результате которого появляются четыре гаплоидные спсрматиды. Во время спермиогенеза сперматиды превращаются в сперматозоиды. Данный процесс включает:
- образование акросомы, содержащей ферменты, которые способствуют проникновению семени;
- конденсацию ядра;
- удаление большей части цитоплазмы;
- формирование шейки, средней части и хвоста.

Мейоз у женщин

Овогенез начинается у плода в возрасте 12 недель и внезапно прекращается к 20-й неделе. Первичные овоциты остаются в форме диплотены профазы I вплоть до овуляции. Данную стадию называют диктиотеной.

Обычно созревает не более одного овоцита в месяц. Под влиянием гормонов первичный овоцит набухает, накапливая цитоплазматический материал. По завершению мейоза I он наследуется одной дочерней клеткой - вторичным овоцитом. Второе ядро переходит в первое направительное тельце, которое обычно не делится и со временем дегенерирует. После окончания мейоза I вторичный овоцит попадает в матку или фаллопиевы трубы.

Мейоз II вторичного овоцита останавливается на стадии метафазы до попадания в него сперматозоида. После этого процесс деления завершается, и образуется большой гаплоидный пронуклеус яйцеклетки, который сливается с пронуклеусом сперматозоида, а также второе направительное тельце, которое дегенерирует.

В зависимости от того, когда произойдёт оплодотворение, продолжительность данного процесса составляет 12-50 лет.

Медицинское значение понимания мейоза

Диплоидный набор хромосом соматических клеток снижается до гаплоидного в половых клетках.
Отцовские и материнские хромосомы подвергаются пересортировке, в результате чего количество возможных комбинаций (за исключением рекомбинаций внутри самих хромосом) возрастает до 223 (8 388 608).

Пересортировка отцовских и материнских аллелей внутри хромосом создаёт между гаметами бесконечное количество генетических вариаций.
Случайность процесса пересортировки отцовских и материнских аллелей во время мейоза (и оплодотворения) позволяет применять теорию вероятностей к генетическим пропорциям и генетической изменчивости согласно законам Менделя.

  • 4. Фенотипические классы кроликов, полученные при анализе на сцепление трех генов
  • Глава 5 генетика пола
  • Нарушения в развитии пола
  • 5. Зависимость пола дрозофилы от отношения числа х-хромосом к числу наборов аутосом (Бриджес, 1932)
  • 6. Нарушения в системе половых хромосом и их фенотипическое проявление
  • Проблема регуляции пола
  • Молекулярные основы наследственности
  • Строение и типы рнк
  • Генетический код
  • Синтез белка в клетке
  • Глава 7 генетика микроорганизмов
  • 700Ахвост
  • Конъюгация
  • Трансдукция
  • Трансформация
  • Глава 8 биотехнология
  • Генная инженерия
  • (По с. М. Гершензону)
  • I Химический синтез днк
  • Xj обработанные рестриктазой
  • 1 Действие днк-лигазы
  • Трансформированные дочерние клетки
  • Клеточная инженерия
  • Химерные животные
  • Трансгенные животные
  • Виды изменчивости
  • 9. Распределение сухостойных коров черно-пестрой породы
  • 3,0 44 5,0 6Д 7.0 8,0 9,0 10,0 11,0 12.0 классы по количеству лейкоцитов (тыс.)
  • 10. Определение основных статистических величин способом произведений для содержания количества лейкоцитов
  • В крови сухостойных коров (тыс. В 1 им)
  • 11. Значение нормального интеграла вероятностей
  • Оценка достоверности разности между средними арифметическими двух выборочных совокупностей
  • Типы распределения
  • 14. Распределение семейств по количеству больных туберкулезом коров
  • 15. Значение вероятности появления редких событий при распределении Пуассона
  • 3,4 3,6 4,0 4,6 5,0 5,4 5,8 Жирность молока, %
  • Критерий хи-квадрат (у2)
  • 16. Соответствие фактического распределения семейств теоретически ожидаемому (биномиальному)
  • II квадрант
  • IV квадрант
  • I квадрант
  • III квадрант
  • 20. Определение г для малых выборок
  • 21. Корреляция частоты заболеваемости лейкозом матерей и дочерей
  • Дисперсионный анализ
  • 23. Сводная таблица однофакториого дисперсионного анализа
  • Классификация мутаций
  • Хромосомные мутации
  • (По Харе, 1978)
  • Кариотипа
  • Генные мутации
  • Индуцированный мутагенез
  • Антимутагены
  • Глава 11 генетические основы онтогенеза
  • Тироксин
  • 27. Продуктивность коров - дочерей и внучек разных быков-производителей в зависимости от условий кормления и выращивания (по о. А. Ивановой) Быки-произво­дители- отцы и деды коров
  • Глава 12 генетика популяций"
  • Популяция и «чистая линия»
  • 29. Снижение частоты рецессивного аллеля а при полной элиминации гомозигот aa (no Визнеру и Виллеру, 1979)
  • 30. Уровень возрастания roi
  • 31. Формы уродств в потомстве быка Бурхана 6083
  • Глава 13
  • 32. Системы генетических групп крови
  • Наследование групп крови
  • 33. Уточнение отцовства по группам крови
  • T t t гены
  • 34. Некоторые биохимические полиморфные системы
  • V " j с j Гены легкой н- цепи
  • Генетика иммуноглобулинов
  • 35. Аллотипы иммуноглобулинов кролика (по Кульбергу, 1985)
  • I клеткой тяжелых и легких I - -n/bJk I фенотип клетки - I а, d , d ,b,b - аллотипы иммуноглобулина кролика
  • 36. Средние титры антител (1дг) поросят разных пород после вакцинации против псевдобешенства (по Rothschild и др.)
  • Ig2 титра антител
  • Клон клеток, возникший в результате мутации (2)
  • 37. Мнс у домашних животных, в том числе птицы
  • 38. Взаимосвязь аллелей комплекса в с заболеваемостью кур md, % (по Hansen и др.)
  • Генетические аномалии
  • Экзогенные аномалии
  • 39. Частота пупочных грыж в потомстве разных быков (по а. И. Жигачеву)
  • 40. Аутосомный доминантный тип наследования
  • 41. Сводка доминантных признаков с летальным эффектом в гомозиготном состоянии (по Мейеру и Вегнеру, 1973)
  • 42. Сцепленный с х-хромосомой тип наследования
  • 43. Список генетически обусловленных аномалий у крупного рогатого скота
  • 44. Частота отдельных форм врожденных аномалий у телят костромской породы (по данным племенного хозяйства за 1969-1982 гг.)
  • 45. Список генетически обусловленных аномалий у свиней
  • 46. Список генетически обусловленных аномалий у овец
  • I Тип наследования
  • I дефекты, встречающиеся
  • Круп­ный рогатый скот
  • Круп­ный рогатый скот
  • 48. Типы центрических слияний (транслокаций) различными парами аутосом у крупного рогатого скота (по Густавссону, с нашими дополнениями)
  • 49. Число осеменений на зачатие (по Ценеру и др.)
  • 50. Продолжительность сервис-периода
  • 52. Сравнение снижения воспроизводительной способности хряков-носителей реципрокных транслокаций и эмбриональной смертности у их потомства
  • 53. Классификация гоносомальных аберраций у лошади
  • 64, Xy овари-
  • 54. Хромосомные аберрации в разных линиях кур (по Блому, 1974)
  • Глава 16
  • Особей из Fi
  • 55. Частота заболеваемости бруцеллезом потомства некоторых быков и семейств (по в. Л. Петухову)
  • 56. Заболеваемость туберкулезом животных разных пород (по Bate, Sidhu)
  • 57. Частота заболеваемости туберкулезом потомства некоторых быков и семейств (по в. Л. Петухову)
  • 58. Сравнение устойчивости некоторых инбредных семейств кроликов
  • По длительности жизни после стандартного введения возбудителей
  • Бычьего туберкулеза и после ингаляции человеческого туберкулеза
  • (По Lurie и Dannenberg)
  • 59. Результаты скрещивания резистентных и восприимчивых к лептоспирозу животных, % (по Przytulskl и др., 1980)
  • 60. Среднее число нематод в 1 г фекалий чистопородных и гибридных овец (по Jazwinski и др.)
  • 61. Генетическая устойчивость к нематодам овец с разными типами гемоглобина (по Aftaif и др.)
  • Выживаемость после инфекции.Дней
  • 62. Смертность от сердечной водянки телят до 30-месячного возраста, родившихся на станции Мара в Трансваале (по Bonsma)
  • К клещам
  • 63. Число клещей после двух заражений (по j. Frish)
  • 64. Устойчивость к клещам разных пород (по j. Frish)
  • 65. Заболеваемость лейкозом дочерей резистентных и восприимчивых к лейкозу быков (по в. Л. Петухову)
  • 66. Частота заболеваемости потомства лейкозом в зависимости от состояния здоровья родителей (по в. Л. Петухову)
  • 67. Частота инфицированности влкрс дочерей, полученных от инфицированных и здоровых матерей (по а. Г. Незавитину)
  • 68. Рак глаз и пигментация радужной оболочки (по Nishimura и др.)
  • 69. Резистентность к болезни Марека инбредных линий кур и их кроссов после экспериментального заражения (по Gavora, Spenser)
  • 70. Зависимость резистентное™ кур к болезни Марека от антигена в21 (по Hutt)
  • Болезни обмена веществ
  • 73. Влияние породы на заболеваемость овец энзоотической атаксией и содержание меди (по Wiener)
  • I печени, мг/кг
  • Воспалительно-инфекционные осложнения
  • 74. Частота болезней и деформация копыт у коров различного происхождения, % (по Косолапикову)
  • 76. Частота мертворожденных и трудных отелов у некоторых пород Скандинавских стран и фрг (цит. По Дехтяреву и др.)
  • К стрессу
  • Генетических аномалий и повышения наследственной устойчивости животных к болезням
  • 77. Количество нормального потомства при разных типах спаривания, необходимое для проверки гетерозиготного носительства у животных
  • Оценка генофонда пород
  • 78. Устойчивость скота разных пород к трипаносомозу, тейлериозу, анаплазмозу и нематодам (по Anosa)
  • 79. Устойчивость кур разных линий к лейкозу и моноцитозу (по Hatt)
  • 80. Коэффициент наследуемости устойчивости (%) к некоторым болезням
  • Крупный рогатый скот
  • 81. Комплексная оценка генофонда некоторых семейств (по в. Л. Петухову)
  • Селекция животных на устойчивость к болезням
  • 82. Селекция морских свинок на устойчивость и чувствительность к т. Columbrtformis (no Rothwell)
  • 83. Результаты селекции цыплят на резистентность к эймериозу (no Klimes, Orel)
  • 84. Наследуемость некоторых механизмов защиты у молодых быков
  • Глава 8. Биотехнология. Г. А. Назарова, в. Л. Лопухов 103
  • Глава 11. Гемтлеспе основы онтогенеза. Г. А. Назарова 178
  • Глава 16. Болезни с наследственной предрасположенностью.
  • Глава 17. Методы профилактики распространенна генетических аномалий н повыпкиня наследственной устойчивости животных к болезням.
  • Гаметогенез и мейоз

    Процесс развития половых клеток носит название гаметогене- за. У самцов этот процесс называется спермиогенезом, а у самок - овогенезом (рис. 6). Половые клетки в развитии после­довательно проходят следующие стадии: размножения, роста, со­зревания и формирования. В стадии размножения клетки интен­сивно делятся митотическим путем. В стадии роста клетки на­капливают питательные вещества, особенно при овогенезе.

    Наиболее ответственный момент с точки зрения генетики при образовании половых клеток - мейоз - процесс редукционного и эквационного деления ооцитов и сперматоцитов, в результате которого образуются половые клетки с гаплоидным набором хромосом. Рассмотрим наиболее важные моменты поведения хОомосом в мейозе. В этом процессе выделяют две стадии деле­ния (см. схему): 1) редукционную и 2) эквационную.

    Схема мейоза

    Второе эквационное деление фазы:

    профаза II

    метафаза II

    анафаза II

    телофаза II

    Деление хромосом на хроматиды и образование из двух дочерних еще двух новых клеток с гаплоидным набором хромосом


    редукционное деление

    профаза I - лептонема

    зигонема

    пахинема

    диплонема

    диакинез метафаза I анафаза I телофаза I

    Образование из одной материнской RXB с диплоидным набором хромо- ДЧ« дочерних с гаплоидным набо- удвоенных хромосом

    ОВОГЕНЕЗ

    СПЕРМАТОГЕНЕЗ

    СПЕРМАТОГОНИИ В СЕМЕННИКЕ И ОВОГОНИИ В ЯИЧ­ НИКЕ MHOFOKPAT НО ДЕЛЯТСЯ МИТОТИЧЕСКИ

    ОВОГОНИИ ДАЕТ,

    СПЕРМАТОГОНИИ ДАЕТ

    сперматоцит /ии первого порядка!

    ПЕРВОЕ

    МЕЙОТИЧЕСКОЕ

    ДЕЛЕНИЕ

    ОВОЦИТ ВТОРОГО ПОРЯДКА ВТОРОЕ МЕЙОТИЧЕСК1 ДЕЛЕНИЕ

    СПЕРМАТОЦИТ ВТОРОГО* Г« ПОРЯД1

    СПЕРМАТИДЫ,

    ЗИГОТА

    Рис. 6. Сравнение процессов сперматогенеза и овогенеза у животных с гаплоид­ ным числом хромосом, равным 2 (по К. Вилли и В. Детье, 1975)

    Непосредственно перед мейозом клетки половых желез нахо­дятся в интерфазе.

    Редукционное деление начинается с профазы I, ко­торая, как видно из схемы, подразделяется на пять фаз. На первой стадии профазы I - лептонемы хромосомы деспирализо-ваны, они в 2-5 раз длиннее метафазных. Под электронным микроскопом можно видеть, что они состоят из двух хроматид, соединенных центромерой. На следующей стадии - зигонемы на­блюдаются притяжение и слияние (конъюгация) гомологичных хромосом. Каждая пара конъюгирующих хромосом образует би­валент, а по числу хроматид - тетраду. На этой стадии происхо­дит образование синаптонемного комплекса (СК), входящего в состав бивалента. Нарушение формирования СК между гомоло­гичными хромосомами наблюдают у гетерозиготных носителей хромосомных аберраций. Далее, на стадии пахинемы, происходят

    утолщение и укорочение хромосом, так что сестринские хрома­тиды становятся хорошо различимыми; на отдельных из них можно видеть и ядрышки.

    Следующая фаза - диплонема характеризуется тем, что конъ-югярующие хромосомы начинают отталкиваться и постепенно расходятся от центромеры к концам. При этом образуются ха­рактерные фигуры, напоминающие греческую букву «хи» (х) и получившие вследствие этого название хиазмы. В точках сопри­косновения гомологичных хромосом возникают разрывы. Они могут быть одинарными, двойными и более сложными. В резуль­тате разрывов образуются фрагменты хроматид, которые затем могут воссоединяться на другой хромосоме, изменяя тем самым комбинацию генетического материала в клетке.

    Обмен участками между гомологичными хромосомами полу­чил название кроссинговера.

    На последней стадии профазы I - диакинезе происходит резкое укорочение хромосом, так что к концу этой стадии хроматиды остаются связанными только на концевых участках. Этим и за­канчивается профаза I. Необходимо отметить, что при более дета­лизированном изучении мейоза в профазе выделяют и другие про­межуточные стадии, например пролептонему, диктионему и т. д.

    На стадии метафазы I биваленты располагаются в плоскости экватора центромерами к противоположным полюсам. Силы от­талкивания здесь увеличиваются.

    В анафазе I начинается расхождение гомологичных хромосом к противоположным полюсам, которое носит случайный харак­тер. Каждая из пар гомологичных хромосом имеет одинаковую вероятность распределения в одну из двух дочерних клеток.

    В телофазе I хромосомы достигают полюсов клетки. Затем вос­станавливаются ядерная оболочка и ядрышко, хромосомы декон-денсируются. В конце телофазы делится цитоплазма {цитокинез) и образуются две дочерние клетки с гаплоидным набором хромосом.

    Отличительной особенностью первой стадии мейоза является то, что в период анафазы сами хромосомы не делятся на хрома­тиды, как при митозе, а лишь расходятся гомологичные пары хромосом к разным полюсам клетки и формируются две дочер­ние клетки с редуцированным наполовину набором хромосом, состоящим, однако, из двух хроматид.

    Между первой и второй стадиями мейоза имеется непродол­жительный период покоя - интеркинез, во время которого не Происходит репродукции хромосом.

    Эквационное, или уравнительное, деление ^илогично митозу, где клетки последовательно проходят четыре Фазы: профазу II, метафазу II, анафазу II, телофазу П. На стадии °*шфазы II хромосомы разделяются на две хроматиды, которые затем с помощью нитей веретена расходятся к противоположным полюсам. На стадии телофазы II заканчивается формирование

    еще двух клеток. В результате после двух последовательных ста­дий мейоза из каждой клетки образуются четыре новые с гапло­идным набором хромосом. Для более наглядного представления всех этих событий можно воспользоваться схемой мейоза, приве­денной на рисунке 7.

    Рис. 7, Схем» последомтелных стадий мейоза (по К. Свенсону и П. Уэбстеру, 1980):

    А - лептонема, предшествующая конъюгации хромосом; Б - начало конъюгации на стадии зигонемы; В- пахинема; Г- диплонема; Д- метафаза I; E- анафаза I; Ж~- телофаза I; 3 - интерфаза между двумя делениями мейоза; И- профаза II; К- метафаза II; Л- тело- фаза II

    Таким образом, в результате двух меиотических делений из одной клетки с диплоидным набором хромосом образуются че­тыре клетки с гаплоидным набором хромосом и в 2 раза мень­шим, чем в соматических клетках, содержанием ДНК. Вероят­ностный характер распределения материнских и отцовских гомо­логичных хромосом в разные клетки позволяет создать новые комбинации негомологичных хромосом в яйцеклетках и сперми-ях, чем достигается огромное число новых сочетаний наследст­венной информации.

    Новые сочетания генетической информации возникают вслед­ствие кроссинговера. Каждая из хромосом в метафазе I содержит участки, происходящие от отцовских и материнских хромосом. Рекомбинации хромосом при кроссинговере и вероятностное распределение их по клеткам - причины наследственной измен­чивости организма. Мейоз, оплодотворение и митоз обеспечива­ют поддержание постоянства числа хромосом в смежных поколе­ниях видов. В этом их биологическое значение.

    Патология мейоза. Основная патология мейоза - нерасхожде­ние хромосом- Оно может быть первичным, вторичным и тре­тичным. Первичное нерасхождение возникает у особей с нор­мальным кариотипом. При этом на стадии анафазы I нарушается разделение бивалентов и обе хромосомы из пары гомологов переходят в одну клетку, что приводит к избытку хромосом в данной клетке (и + 1) и недостатку в другой (и-1). Вторичное нерасхождение возникает в гаметах у особей с избытком (трисо-мией) одной хромосомы в кариотипе. В результате этого в про­цессе мейоза образуются и биваленты, и униваленты. Третичные нерасхождения наблюдают у особей, имеющих структурные перестройки хромосом, например транслокации. Нерасхождение хромосом отрицательно влияет на жизнеспособность организма животных. Подробно об этом будет изложено в последующих главах.

    Отличительная особенность мейоза у самок - образование в первом и втором меиотических делениях так назьгааемых поляр­ных телец, которые впоследствии дегенерируют и в размножении не участвуют. Неравные деления в овогенезе обеспечивают яйце­клетке необходимое количество цитоплазмы и запасного желтка, чтобы она могла выжить после оплодотворения. В отличие от спермиогенеза, который у самцов происходит как во внутриут­робный (пренатальный) период, так и после рождения (постна-тальный период), у самок яйцеклетка после рождения не образу­ется. Однако к концу пренатального периода у самок накаплива­ется огромное количество овоцитов (у коров, например, десятки тысяч), а созревают и дают начало развитию потомства лишь немногие из них. Этот резерв генетического материала, особенно у малоплодных животных, таких, как крупный рогатый скот, в настоящее время начинают использовать для искусственного

    стимулирования созревания многих яйцеклеток, последующего их оплодотворения и пересадки (трансплантации) специально подготовленным коровам-реципиентам. Таким образом от одной ценной коровы в год можно получить не одного, а несколько телят.

    Оплодотворение наступает после слияния гаплоидных сперма­тозоида и яйцеклетки и образования диплоидной клетки - зиго­ты, дающей начало развитию эмбриона. При делении клеток эмбриона, содержащих хромосомы матери и отца, генетическая информация поступает во все клетки нового организма.

    Морфологические и функциональные различия хромосомных наборов - основные причины эмбриональной смертности после оплодотворения при скрещивании разных видов или бесплодия гибридов. Так, при скрещивании зайца и кролика не происходит имплантации и развития оплодотворенной яйцеклетки. Эмбрио­нальная смертность наступает при скрещивании козы и овцы. Мужские гибвиды осла (2 л = 62) и лошади (2л = 64), как из­вестно, не дф.т потомства, они стерильные, или бесплодные. Стерильность гибридов-самцов наблюдается при скрещивании европейского крупного рогатого скота с бизоном, зубром, яком, а также гауром и гаялом.

    Это связано с тем, что у гибридов нарушаются процессы спермиогенеза. Однако при скрещивании европейского крупного рогатого скота с азиатским горбатым зебу, дикого кабана (2л = 36) и домашней свиньи (2л = 38) потомство рождается плодовитое. В результате сложных вариантов скрещиваний в последнее время удалось получить плодовитых гибридов крупно­го рогатого скота с зуС^ом, бизоном, яком. Гибриды отличаются такими ценными качествами, как крепкое телосложение, высо­кая жизнеспособность, хорошие мясные признаки.

    Контрольные вопросы. 1. Каковы морфологическое строение и химический состав хромосом? 2. Что такое кариотип и каковы его особенности у разных видов животных? 3. Что такое митоз и каково его биологическое значение? 4. Что такое гаметогенез и каковы его особенности у самцов и самок? 5. Что вы знаете о мейозе и его биологическом значении? 6. Каковы основные формы патологий митоза и мейоза?

    Гамета — генеративная, половая клетка, образованная в результате (у споровых растений — в результате ) и содержащая в своем ядре гаплоидный (одинарный) набор хромосом. Обеспечивает передачу наследственной информации от родителей к потомкам.

    Гаметогенез — процесс образования половых клеток — основа продолжения жизни на Земле.

    Организмы, у которых разные особи производят мужские и женские гаметы, — раздельнополы.
    Виды организмов, у которых одна и та же особь производит и мужские и женские гаметы, — гермафродиты.

    Органы, в которых образуются половые клетки, гаметы — гонады



    Как уже было показано в теме , половые клетки — гаплоидные , т.е. имеют одинарный набор хромосом. Это задумано природой для того, чтобы, объединившись, две клетки с одинарным набором сформировали полноценный организм с диплоидным — двойным набором.

    Давайте разберем процесс образования этих клеток поподробнее…

    1. Размножение

      Будущие половые клетки образуются из «заготовок» — специальных клеток с двойным (диплоидным ) набором хромосом, которые называются овогонии (женские) и сперматогонии (мужские клетки).
      И сначала эти клетки энергично делятся, делятся , чтобы увеличить свой количество.
      Интересно, что в мужском и женском организме этот период происходит в разное время.

      Овогонии
      размножаются тогда, когда человека и женщиной-то назвать еще нельзя, это еще эмбрион. Т.е. женский организм рождается уже с определенным количеством овогоний. По истечении 7 месяцев развития эмбриона клетки приступают к Сперматогонии размножаются в течение всего репродуктивного периода мужского организма. У всех организмов этот период разный, но, безусловно, он значительно дольше, чем у женского, и конечно, половых клеток в мужском организме образуется гораздо больше.

    2. Рост

      Рост, увеличение в размерах, накопление питательных веществ — все это характеристики этапа роста, подготовки к делению — к . Именно на этой стадии эти клетки уже называют овоцитами и сперматоцитами I порядка .
      Важно: на этом этапе кол-во хромосом остается то же, а вот ДНК удваивается !

    3. Созревание

      Хвост — содержит микротрубочки, обеспечивающие подвижность клетки.

      • происходит мейоз 1 — количество хромосом уменьшается вдвое. Образуется сперматоцит II порядка .
      • Второе деление — мейоз 2 — образуются четыре гаплойдные клетки — сперматиды . Они переходят на 4-ю стадию процесса.

      4. Формирование (спермиогенез)

      Клетки «доформировываются». Им предстоит долгий и трудный путь до яйцеклетки. Победителем в этом марафоне будет только один, поэтому необходимо подготовиться: уплотняется ядро, хромосомы спирализуются, цитоплазма уходит; формируется жгутик — именно за счет него сперматозойд осущствляет поступательное движение, в нем должно быть много белки и митохондрии. Спринтер готов.

    Рассмотрите рисунки 84, 85, 86. Чем мужские половые клетки отличаются от женских? Вспомните, как происходит деление клеток. Что такое митоз? Какие процессы происходят в каждую из стадий митоза?

    В основе полового размножения лежит процесс слияния половых клеток - гамет. В отличие от неполовых клеток, половые всегда имеют одинарный набор хромосом, что предотвращает увеличение числа хромосом у нового организма. Образование клеток с одинарным набором хромосом происходит в процессе особого типа деления - мейоза.

    Мейоз. Мейоз (от греч. мейозис - уменьшение, убывание) - такое деление клетки, при котором хромосомный набор во вновь образующихся дочерних клетках уменьшается вдвое.

    Как митозу, так и мейозу предшествует интерфаза, в которую происходит редупликация ДНК. Перед началом деления каждая хромосома состоит из двух молекул ДНК, которые образуют две сестринские хромати-ды, сцепленные центромерами. Таким образом, перед началом деления хромосомный набор клетки составляет 2л, а количество ДНК - увеличено вдвое.

    Процесс мейоза состоит из двух последовательных делений - мейоз I и мейоз II, которые подразделяются на те же стадии, что и митоз. В результате образуются не две, а четыре клетки (рис. 82).

    Рис. 82. Стадии мейоза: 1 - профаза I; 2 - метафаза I; 3 - анафаза I; 4 - телофаза I; 5 - метафаза II; 6 - апафаза II; 7 - телофаза II

    Профаза I. Эта стадия значительно длиннее, чем в митозе. Хромосомы спирализуются и утолщаются. Гомологичные хромосомы попарно соединяются друг с другом, т. е. происходит их конъюгация (от лат. конъюгацио - соединение). В результате этого в клетке образуется комплекс из двойных хромосом (рис. 83). Затем между участками гомологичных хромосом осуществляется обмен генами - кроссинговер (от англ. кроссинговер - пересечение, скрещивание). Это приводит к новым сочетаниям генов в хромосомах (рис. 83). После этого ядерная оболочка в клетке исчезает, центриоли расходятся к полюсам, и образуется веретено деления.

    Рис. 83. Конъюгация и кроссинговер между гомологичными хромосомами (буквами обозначены находящиеся в хромосомах гены)

    Метафаза I. Гомологичные хромосомы попарно располагаются в экваториальной зоне клетки над и под плоскостью экватора. Центромеры хромосом соединяются с нитями веретена деления.

    Анафаза I. К полюсам клетки расходятся гомологичные хромосомы. Это основное отличие мейоза от митоза, где идет расхождение сестринских хроматид. Таким образом, у каждого из полюсов оказывается только одна хромосома из гомологичной пары. Число хромосом у полюсов уменьшается вдвое - происходит его редукция.

    Телофаза I. Делится все остальное содержимое клетки, образуется перетяжка и возникают две клетки с одинарным набором хромосом (л). Каждая хромосома при этом состоит из двух сестринских хроматид - двух молекул ДНК. Образование двух клеток наступает не всегда. Иногда телофаза сопровождается только образованием двух ядер.

    Перед вторым делением мейоза интерфаза отсутствует. Обе образовавшиеся клетки после периода покоя или сразу приступают ко второму делению мейоза. Мейоз II полностью идентичен митозу и происходит в двух клетках (ядрах) синхронно.

    Профаза II значительно короче профазы I. Ядерная оболочка вновь исчезает, образуется веретено деления.

    В метафазе II хромосомы выстраиваются в плоскости экватора. Нити веретена деления соединяются с центромерами хромосом. В анафазе II, как и в митозе, к полюсам клетки расходятся сестринские хроматиды - хромосомы. У каждого полюса образуется одинарный набор хромосом (п.), при этом каждая хромосома состоит из одной молекулы ДНК. Телофаза II заканчивается образованием четырех клеток (ядер) с одинарным набором хромосом и одной молекулой ДНК в каждой.

    Биологическое значение мейоза заключается в образовании клеток с одинарным набором хромосом. Развивающиеся затем из них гаметы при половом размножении сливаются и двойной набор хромосом в результате этого восстанавливается. Кроме того, кроссинговер приводит к новым сочетаниям генов в хромосомах клеток, что служит основой для комбинативной изменчивости организмов.

    Образование половых клеток у животных. Процесс образования половых клеток называют гаметогенезом (от гамета и греч. генезис - рождение). У животных гаметы образуются в половых органах: в семенниках у самцов и яичниках у самок.

    Гаметогенез протекает последовательно, в три стадии в соответствующих зонах и заканчивается формированием сперматозоидов и яйцеклеток. На стадии размножения первичные половые клетки интенсивно делятся митозом, что значительно увеличивает их число. На следующей стадии роста клетки растут, запасают питательные вещества. Этот период соответствует интерфазе перед мейозом. Далее клетка переходит в стадию созревания, где происходит мейоз, образуются клетки с одинарным набором хромосом, окончательно формируются и созревают гаметы.

    Рис. 85. Сперматозоиды млекопитающего: А - схема строения: 1 - головка; 2 - пузырек с ферментами: 3 - ядро: 4 - шейка; 5 - митохондрии; 6 - центриоли; 7 - хвостик. Б - фото в световой микроскоп

    Сперматогенез характеризуется образованием мужских половых клеток - сперматозоидов. Из одной первичной половой клетки образуются четыре одинаковые по величине гаметы - сперматозоиды.

    Оогенез (от греч. оон - яйцо и генезис) характеризуется образованием женских половых клеток - яйцеклеток. Процесс образования яйцеклетки значительно продолжительнее, чем сперматозоиных. Митохондрии, сосредоточенные в шейке, обеспечивают движущийся сперматозоид энергией.

    Яйцеклетка - округлая, крупная неподвижная клетка, содержащая ядро, все органоиды и много питательного вещества в виде желтка (рис.86). Яйцеклетка у любого вида животных всегда значительно крупнее его сперматозоидов. Благодаря ее питательным веществам обеспечивается развитие зародыша на начальной стадии (у рыб, земноводных и млекопитающих) или на всем протяжении зародышевого развития (у пресмыкающихся и птиц).

    Рис. 86. Строение яйцеклетки млекопитающего: 1 - ядро; 2 - желточные зерна

    Размеры яйцеклеток у разных видов животных существенно варьируют. У млекопитающих они в среднем составляют 0,2 мм. У амфибий и рыб 2-10 мм, а у рептилий и птиц достигают нескольких сантиметров.

    Упражнения по пройденному материалу

    1. Какой тип деления клетки лежит в основе полового размножения животных? Какие клетки образуются в результате такого деления?
    2. В чем основное, отличие мейоза от митоза? 3. Объясните, почему деление мейоза всегда предшествует половому размножению животных. 4. В чем заключается биологическое значение мейоза? 5. Каковы раз личия в процессах сперматогенеза и оогенеза?
    3. Рассмотрите с помощью микроскопа готовые микропрепараты сперматозоидов и яйцеклеток млекопитающих. Сравните между собой строение сперматозоида и яйцеклетки. В чем причина различии?

    Под клеточным циклом понимают совокупность событий, происходящих от образования клетки (включая само деление) до ее деления или гибели. Промежуток времени от деления до деления называют интерфазой , которая в свою очередь делится на три периода – G1 (пресинтетический), S (синтетический) и G2 (постсинтетический). G1 – период роста, по времени самый продолжительный и включает G0 период, когда выросшая клетка или находится в состоянии покоя, или дифференцируется, превращается, например, в клетку печени и функционирует как клетка печени а затем отмирает. Набор хромосом и ДНК диплоидной клетки в этот период 2n2c, где n – число хромосом, с – число молекул ДНК. В S-период происходит основное событие интерфазы – репликация ДНК и набор хромосом и ДНК становится 2n4c, так число молекул ДНК удвоилось. В G2 клетка активно синтезирует необходимые ферменты, происходит увеличение числа органоидов, набор хромосом и ДНК не изменяется – 2n4c. Возможность выхода клетки из G2 периода в G0 период в настоящее время большинством авторов отрицается.

    Митотический цикл наблюдается у клеток, которые постоянно делятся, у них отсутствует период G 0 . Примером таких клеток являются многие клетки базального слоя эпителия, стволовые гемопоэтические клетки. Митотический цикл продолжается около 24 часов, примерная продолжительность стадий для быстро делящихся клеток человека такова: G 1 -период 9 ч, S-период – 10 часов, G 2 -период – 4,5 ч, митоз – 0,5 ч.

    Митоз – основной способ деления эукариотических клеток, при котором дочерние клетки сохраняют хромосомный набор исходной материнской клетки.

    Митоз представляет собой непрерывный процесс, в котором выделяют четыре фазы: профазу, метафазу, анафазу и телофазу.

    Профаза (2n4c ) – происходит разрушение ядерной оболочки на фрагменты, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом. Это самая продолжительная фаза митоза.

    Метафаза (2n4c ) – выстраивание максимально конденсированных двухроматидных хромосом в экваториальной плоскости клетки (образуется метафазная пластинка), прикрепление нитей веретена деления одним концом – к центриолям, другим – к центромерам хромосом.

    Анафаза (4n4c ) – деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки, (при этом хроматиды становятся самостоятельными однохроматидными хромосомами).

    Телофаза (2n2c в каждой дочерней клетке) – деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия). Цитотомия в животных клетках происходит за счет борозды деления, в растительных клетках – за счет клеточной пластинки.

    Рис. . Фазы митоза

    Биологическое значение митоза . Образовавшиеся в результате этого способа деления дочерние клетки являются генетически идентичными материнской. Митоз обеспечивает постоянство хромосомного набора в ряду поколений клеток. Лежит в основе таких процессов, как рост, регенерация, бесполое размножение и др.

    Второе мейотическое деление (мейоз 2) называется эквационным.

    Профаза 2 (1n2c ). Короче профазы 1, хроматин конденсирован, нет конъюгации и кроссинговера, происходят процессы, обычные для профазы – распад ядерных мембран на фрагменты, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления.

    Метафаза 2 (1n2c ). Двухроматидные хромосомы выстраиваются в экваториальной плоскости клетки, формируется метафазная пластинка.

    Создаются предпосылки для третьей рекомбинации генетического материала – многие хроматиды мозаичные и от их расположения на экваторе зависит, к какому полюсу они в дальнейшем отойдут. К центромерам хроматид прикрепляются нити веретена деления.

    Анафаза 2 (2n2с). Происходит деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами), происходит третья рекомбинация генетического материала.

    Телофаза 2 (1n1c в каждой клетке). Хромосомы деконденсируются, образуются ядерные оболочки, разрушаются нити веретена деления, появляются ядрышки, происходит деление цитоплазмы (цитотомия) с образованием в итоге четырех гаплоидных клеток.

    Биологическое значение мейоза.

    Мейоз является центральным событием гаметогенеза у животных и спорогенеза у растений. С его помощью поддерживается постоянство хромосомного набора – после слияния гамет не происходит его удвоения. Благодаря мейозу образуются генетически различные клетки, т.к. в процессе мейоза трижды происходит перекомбинация генетического материала: за счет кроссинговера (профаза 1), за счет случайного, независимого расхождения гомологичных хромосом (анафаза 1) и за счет случайного расхождения хроматид (анафаза 2).

    Амитоз – прямое деление интерфазного ядра путем перетяжки без спирализации хромосом, без образования веретена деления. Дочерние клетки имеют неодинаковый генетический материал. Может ограничиваться только делением ядра, что приводит к образованию дву- и многоядерных клеток. Описан для стареющих, патологически измененных и обреченных на гибель клеток. После амитоза клетка не способна вернуться в нормальный митотический цикл. В норме наблюдается в высокоспециализированных тканях, в клетках, которым уже не предстоит делиться – в эпителии, печени.

    Гаметогенез . Гаметы формируются в половых железах – гонадах . Процесс развития гамет называется гаметогенезом . Процесс образования сперматозоидов называется сперматогенезом , а образование яйцеклеток – овогенезом (оогенезом ). Предшественники гамет – гаметоциты образуются на ранних стадиях развития зародыша за пределами половых желез, а затем мигрируют в них. В половых железах различают три разных участка (или зоны) – зона размножения, зона роста, зона созревания половых клеток. В этих зонах происходят фазы размножения, роста и созревания гаметоцитов. В сперматогенезе имеется еще одна фаза – фаза формирования.

    Фаза размножения. Диплоидные клетки в этой зоне половых желез (гонад) многократно делятся митозом. Количество клеток в гонадах растет. Их называют оогонии и сперматогонии .

    Фаза роста . В эту фазу происходит рост сперматогоний и оогоний, репликация ДНК. Образовавшиеся клетки называются ооциты 1-го порядка и сперматоциты 1-го порядка с набором хромосом и ДНК 2n4с .

    Фаза созревания. Сущность этой фазы – мейоз. Гаметоциты 1-го порядка вступают в первое мейотическое деление. В результате образуются гаметоциты 2-го порядка (n2с), которые вступают во второе мейотическое деление, и образуются клетки с гаплоидным набором хромосом (nc) – яйцеклетки и округлые сперматиды. Сперматогенез включает еще фазу формирования , во время которой сперматиды превращаются в сперматозоиды.

    Сперматогенез . Во время периода полового созревания диплоидные клетки в семенных канальцах семенников делятся митотически, в результате чего образуется множество более мелких клеток, называемых сперматогониями . Часть образовавшихся клеток может подвергаться повторным митотическим делениям, в результате чего образуются такие же клетки сперматогонии. Другая часть прекращает делиться и увеличивается в размерах, вступая в следующую фазу сперматогенеза – фазу роста.

    Клетки Сертоли обеспечивают механическую защиту, опору и питание развивающихся гамет. Увеличившиеся в размерах сперматогонии называются сперматоцитами 1-го порядка . Фаза роста соответствует интерфазе 1 мейоза, т.е. во время нее происходит подготовка клеток к мейозу. Главными событиями фазы роста является репликация ДНК и накопление питательных веществ.

    Сперматоциты 1-го порядка (2n4с ) вступают в первое (редукционное) деление мейоза, после которого образуются сперматоциты 2-го порядка (n2c ). Сперматоциты 2-го порядка вступают во второе (эквационное) деление мейоза и образуются округлые сперматиды (nc ). Из одного сперматоцита 1-го порядка возникают четыре гаплоидные сперматиды. Фаза формирования характеризуется тем, что первично шаровидные сперматиды подвергаются ряду сложных преобразований, в результате которых образуются сперматозоиды.

    У человека сперматогенез начинается в период полового созревания, срок формирования сперматозоида – три месяца, т.е. каждые три месяца сперматозоиды обновляются. Сперматогенез происходит непрерывно и синхронно в миллионах клеток.

    Строение сперматозоида. Сперматозоид млекопитающих имеет форму длинной нити.

    Длина сперматозоида человека 50-60 мкм. В строении сперматозоида можно выделить «головку», «шейку» промежуточный отдел и хвостик. В головке находится ядро и акросома . Ядро содержит гаплоидный набор хромосом. Акросома (видоизмененный комплекс Гольджи) – органоид, содержащий ферменты, используемые для растворения оболочек яйцеклетки. В шейке расположены две центриоли, в промежуточном отделе – митохондрии. Хвостик представлен одним, у некоторых видов двумя и более жгутиками. Жгутик является органоидом движения и сходен по строению со жгутиками и ресничками простейших. Для движения жгутиков используется энергия макроэргических связей АТФ, синтез АТФ происходит в митохондриях. Сперматозоид открыт в 1677 году А.Левенгуком.

    Овогенез.

    В отличие от образования сперматозоидов, которое происходит только после достижения половой зрелости, процесс образования яйцеклеток у человека начинается еще в эмбриональном периоде и течет прерывисто. У зародыша полностью осуществляются фазы размножения и роста, и начинается фаза созревания. К моменту рождения девочки в ее яичниках находятся сотни тысяч овоцитов 1-го порядка, остановившихся, «застывших» на стадии диплотены профазы 1 мейоза.

    В период полового созревания мейоз возобновится: примерно каждый месяц под действием половых гормонов один из овоцитов 1-го порядка (редко два) будет доходить до метафазы 2 мейоза и овулировать на этой стадии. Мейоз может пройти до конца только при условии оплодотворения, проникновения сперматозоида, если оплодотворение не происходит, овоцит 2-го порядка погибает и выводится из организма.

    Овогенез осуществляется в яичниках, подразделяется на три фазы – размножения, роста и созревания. Во время фазы размножения диплоидные овогонии многократно делятся митозом. Фаза роста соответствует интерфазе 1 мейоза, т.е. во время нее происходит подготовка клеток к мейозу, клетки значительно увеличиваются в размерах вследствие накопления питательных веществ. Главным событием фазы роста является репликация ДНК. Во время фазы созревания клетки делятся мейозом. Во время первого деления мейоза они называются овоцитами 1-го порядка. В результате первого мейотического деления возникают две дочерние клетки: мелкая, называемая первым полярным тельцем , и более крупная – овоцит 2-го порядка .


    Второе деление мейоза доходит до стадии метафазы 2, на этой стадии и происходит овуляция – овоцит выходит из яичника и попадает в маточные трубы.

    Если в овоцит проникает сперматозоид, второе мейотическое деление проходит до конца с образованием яйцеклетки и второго полярного тельца, а первое полярное тельце – с образованием третьего и четвертого полярных телец. Таким образом, в результате мейоза из одного овоцита 1-го порядка образуются одна яйцеклетка и три полярных тельца.

    Строение яйцеклеток. Форма яйцеклеток обычно округлая. Размеры яйцеклеток колеблются в широких пределах – от нескольких десятков микрометров до нескольких сантиметров (яйцеклетка человека – около 120 мкм). К особенностям строения яйцеклеток относятся: наличие оболочек, располагающихся поверх плазматической мембраны; и наличие в цитоплазме более

    или менее большого количества запасных питательных веществ. У большинства животных яйцеклетки имеют дополнительные оболочки, располагающиеся поверх цитоплазматической мембраны. В зависимости от происхождения различают: первичные, вторичные и третичные оболочки . Первичные оболочки формируются из веществ, выделяемых овоцитом и, возможно, фолликулярными клетками. Образуется слой, контактирующий с цитоплазматической мембраной яйцеклетки. Он выполняют защитную функцию, обеспечивает видовую специфичность проникновения сперматозоида, т. е. не позволяет сперматозоидам других видов проникать в яйцеклетку. У млекопитающих эта оболочка называется блестящей . Вторичные оболочки образуются выделениями фолликулярных клеток яичника. Имеются далеко не у всех яйцеклеток. Вторичная оболочка яиц насекомых содержит канал – микропиле, через который сперматозоид проникает в яйцеклетку. Третичные оболочки образуются за счет деятельности специальных желез яйцеводов. Например, из секретов особых желез формируются белковая, подскорлуповая пергаментная, скорлуповая и надскорлуповая оболочки у птиц и рептилий.

    Вторичные и третичные оболочки, как правило, образуются у яйцеклеток животных, зародыши которых развиваются во внешней среде. Поскольку у млекопитающих наблюдается внутриутробное развитие, их яйцеклетки имеют только первичную, блестящую оболочку, поверх которой располагается лучистый венец – слой фолликулярных клеток, доставляющих к яйцеклетке питательные вещества.


    В яйцеклетках происходит накопление запаса питательных веществ, которые называют желтком. Он содержит жиры, углеводы, РНК, минеральные вещества, белки, причем основную его массу составляют липопротеиды и гликопротеиды. Желток содержится в цитоплазме обычно в виде желточных гранул. Количество питательных веществ, накапливаемых в яйцеклетке, зависит от условий, в которых происходит развитие зародыша. Так, если развитие яйцеклетки происходит вне организма матери и приводит к формированию крупных животных, то желток может составлять более 95% объема яйцеклетки. Яйцеклетки млекопитающих, развивающиеся внутри тела матери, содержат малое количество желтка – менее 5%, так как питательные вещества, необходимые для развития эмбрионы получают от матери.

    В зависимости от количества содержащегося желтка различают следующие типы яйцеклеток: алецитальные (не содержат желтка или имеют незначительное количество желточных включений – млекопитающие, плоские черви); изолецитальные (с равномерно распределенным желтком – ланцетник, морской еж); умеренно телолецитальные (с неравномерно распределенным желтком – рыбы, земноводные); резко телолецитальные (желток занимает большую часть, и лишь небольшой участок цитоплазмы на анимальном полюсе свободен от него – птицы).

    В связи с накоплением питательных веществ, у яйцеклеток появляется полярность. Противоположные полюсы называются вегетативным и анимальным . Поляризация проявляется в том, что происходит изменение местоположения ядра в клетке (оно смещается в сторону анимального полюса), а также в особенностях распределения цитоплазматических включений (во многих яйцах количества желтка возрастает от анимального к вегетативному полюсу).

    Яйцеклетка человека была открыта в 1827 году К.М.Бэром.

    Оплодотворение. Оплодотворение – процесс слияния половых клеток, приводящий к образованию зиготы. Собственно процесс оплодотворения начинается в момент контакта сперматозоида и яйцеклетки. В момент такого контакта плазматическая мембрана акросомального выроста и прилежащая к ней часть мембраны акросомального пузырька растворяются, фермент гиалуронидаза и другие биологически активные вещества, содержащиеся в акросоме, выделяются наружу и растворяют участок яйцевой оболочки. Чаще всего сперматозоид полностью втягивается в яйцо, иногда жгутик остается снаружи и отбрасывается. С момента проникновения сперматозоида в яйцо гаметы перестают существовать, так как образуют единую клетку – зиготу. Ядро сперматозоида набухает, его хроматин разрыхляется, ядерная оболочка растворяется, и он превращается в мужской пронуклеус. Это происходит одновременно с завершением второго деления мейоза ядра яйцеклетки, которое возобновилось благодаря оплодотворению. Постепенно ядро яйцеклетки превращается в женский пронуклеус. Пронуклеусы перемещаются к центру яйцеклетки, происходит репликация ДНК, и после их слияния набор хромосом и ДНК зиготы становится 2n4c . Объединение пронуклеусов и представляет собой собственно оплодотворение. Таким образом, оплодотворение заканчивается образованием зиготы с диплоидным ядром.

    В зависимости от количества особей, принимающих участие в половом размножении, различают: перекрестное оплодотворение – оплодотворение, в котором принимают участие гаметы, образованные разными организмами; самооплодотворение – оплодотворение, при котором сливаются гаметы, образованные одним и тем же организмом (ленточные черви).

    Партеногенез – девственное размножение, одна из форм полового размножения, при котором из не происходит оплодотворения, из неоплодотворенной яйцеклетки развивается новый организм. Встречается у ряда видов растений, беспозвоночных и позвоночных животных, кроме млекопитающих, у которых партеногенетические зародыши погибают на ранних стадиях эмбриогенеза. Партеногенез может быть искусственным и естественным.

    Искусственный партеногенез вызывается человеком путем активизации яйцеклетки воздействием на нее различными веществами, механическим раздражением, повышением температуры и т.д.

    При естественном партеногенезе яйцо начинает дробиться и развиваться в эмбрион без участия сперматозоида, только под влиянием внутренних или внешних причин. При постоянном (облигатном ) партеногенезе яйца развиваются только партеногенетически, например, у кавказских скальных ящериц. Все животные этого вида – только самки При факультативном партеногенезе зародыши развиваются и партеногенетически и половым путем. Классический пример – у пчел семяприемник матки устроен так, что она может откладывать оплодотворенные и неоплодотворенные яйца, из неоплодотворенных развиваются трутни. Оплодотворенные яйца развиваются в личинок рабочих пчел – недоразвитых самок, или в цариц – в зависимости от характера питания личинки. При циклическом

    

    Copyright © 2024 Наука. Техника. Экономика. Литература. Юриспруденция.