Материал подготовил в.в.еремин, научный руководитель сборной россии, доцент химического факультета мгу. Open Library - открытая библиотека учебной информации Литература к лабораторной работе

ТЕРМОДИНАМИКА ГАЛЬВАНИЧЕСКОГО ЭЛЕМЕНТА.

УРАВНЕНИЯ НЕРСТА

В ходе химической реакции при работе гальванического элемента на каждом электроде растворяется или выделяется n молей вещества. В соответствии с законом Фарадея во внешней цепи протекает nF кулонов электричества. (F - постоянная Фарадея, Кл/моль).

Для равновесного обратимого и самопроизвольного процесса, протекающего в гальваническом элементе при постоянных температуре и давлении, уменьшение энергии Гиббса равно максимальной полезной работе.

Эта максимально полезная работа эквивалентна электрической энергии, равной nFE, получаемой при работе гальванического элемента.

n - число электронов, пронимающих участие в процессе,

F - постоянная Фарадея (96 500 Кл),

E - ЭДС элемента.

Тогда и получим:

Из формулы (1)получим выражение для ЭДС гальванического элемента:

Представим окислительно-восстановительную реакцию, протекающую в гальваническом элементе, в общем виде:

где В,D,R и Q - атомы или ионы, входящие в состав растворов электролитов, электродов и участвующие в окислительно-восстановительной реакции (для медно-цинкового гальванического элемента это ионы Cu 2+ и Zn 2+); b,d,r и q - стехиометрические коэффициенты.

Если обозначать активность реагирующих веществ через активности а В, а Д, а R ,а Q , то по уравнению изотермы химической реакции можно написать: (3)

где Ка - константа равновесияокислительно-восстановительной реакции гальванического элемента, выраженная через активность; - начальные и конечные неравновесные концентрации веществ в виде активности, определяющие химическую реакцию в гальваническом элементе.

Подставив выражение для энергии Гиббса из уравнения (3) в уравнение (2), получим:

(5),

.

Уравнения (4) и (5) представляет собой промежуточные варианты уравнения Нернста для выражения ЭДС гальванического элемента.

Проведем дальнейшее преобразования уравнения (5). Первый член этого уравнения (RT/nF)lnKa при данной температуре есть величина постоянная. Если начальная активность веществ, участующих в химической реакции при работе гальванического элемента, равна единице, т.е. , то второй член уравнения (5) обращается в нуль:

В этих условиях ЭДС гальванического элемента принята за стандартную и обозначается через Е0

Стандартная ЭДС определяется как разность стандартных электродных потенциалов гальванического элемента

С учетом равенства (6) уравнение Нернста можно представить следующим образом:

(7) - уравнение Нернста

где Е 0 - стандартная ЭДС элемента; R - универсальная газовая постоянная; Т - абсолютная температура; n - число электронов (валентность ионов) в соответствии со стехиометрическим уравнением реакций; F - постоянная Фарадея.

Величины R и F - постоянные, а при данной температуре и RT/F тоже будет постоянной. Перейдем от натуральных логарифмов к десятичным и освободимся от отрицательного знака перед вторым членом уравнения (7) (напомним, что для этого необходимо воспользоваться обратным логарифмом - короче говоря, поменять местами числитель со знаменателем). После преобразования вместо уравнения (2) ЭДС гальванического элемента при 298К будет равна

(8)

Уравнения (7) и (8) можно считать окончательным вариантом записи уравнения Нернста. Отношение активностей электролитов гальванического элемента, входящее во второй член правой части уравнения (8), имеет вид, подобный уравнению для константы химического равновесия Ка. Однако константа равновесия определяется активностями применительно к равновесным условиям, а отношение активностей в правой части уравнения отражает неравновесные условия, т.е, реально существующие в гальваническом элементе концентрации ионов, выраженные через активности.

Пример. В зависимости Даниэля-Якоби протекают следующие процессы:

Суммарная электродная реакция:

ЭДС данного элемента равна:

Так как при Т=298К активности цинка и меди равны единице а=1, то

или

в общем случае (9) - уравнение Нернста.

Пример. Вычислить ЭДС элемента Даниэля-Якоби, если активность ионов цинка

0,1М; меди =1М; =1,1В (Т=298К).

(10) - уравнение Нернста для электродного потенциала.

F - число Фарадея (96 500 Кл);

T - абсолютная температура;

n - число электронов, участвующих а процессе.

Стандартный потенциал данного электрода. Это потенциал электрода при активностях ионов, равных единице (=1).

Напомню, стандартная ЭДС гальванического элемента определяется разностью стандартных потенциалов:

Стандартную ЭДС можно выразить следующим образом:

Отсюда, зная стандартную ЭДС, можно определить константу равновесия электрохимической реакции:

- стандартные электродный потенциал приводится в таблицах.

Пример. Рассмотрим электродный процесс:

Определим потенциал этого электрода по уравнению Нернста:

;

.

Следует напомнить, что а - это активность ионов в растворе. Она определяется по формуле:

Коэффициент активности;

С - молярная концентрация .

Численные значения коэффициента активности приводится в таблицах.

Чем активность отличается от концентрации:

Из - за ионного облака возможность перехода иона из раствора затрудняется. Причем, чем больше концентрация соли, тем сильнее ион связан в раствором. Таким образом, коэффициент активности учитывает межионные взаимодействия.

Активность можно рассматривать как исправленную концентрацию. Зная конценрацию ионов электролита, по уравнению Нернста можно рассчитать теоретическое значения электродного потенциала. Но электродный потенциал легко измерить и экспериментально (). Опыт показал, что при малых концентрациях ионов электролита в растворе экспериментально измеренный потенциал равен теоретическому значению потенциала, если подставить в формулу Нернста концентрации ионов.

(11)

Но чем больше концентрация электролита, тем больше расхождения и , рассчитанный по уравнению (11). При больших концентрациях ионов электролита используют для расчетов формулу (10). Тогда при использовании этой формулы потенциал электрода теоретической всегда будет равен экспериментально измеренному потенциалу.

СВЯЗЬ ЭДС С ТЕРМОДИНАМИЧЕСКИМИ ПАРАМЕТРАМИ.

ЗАВИСИМОСТЬ ЭДС ОТ ТЕМПЕРАТУРЫ

1. При постоянном давлении и температуре уменьшение энергии Гиббса энергии электрохимической реакции равно максимально полезной работе, которая в свою очередь равна nFE:

2. Связь между ЭДС гальванических элементов и изменением энтальпии и энтропии протекающей в ней реакции

(12)

устанавливается на основе уравнения Гиббса-Гельмгольца.

Сочетание уравнений (1) и (12) дает

(13)

Отсюда ЭДС гальванического элемента можно выразить следующим образом:

где - температурный коэффициент ЭДС.

Изменение энтропии можно выразить следующим образом.

(15)

Изменение энтальпии в ходе электрохимической реакции равно:

(16).

АНАЛИЗ УРАВНЕНИЯ (13)

1. Если =0, то . Применяют для гальванических элементов, которые используются в качестве эталонов при электрических измерениях, например, элемент Вестона.

2. >0, то < (электрическая работа больше теплового эффекта реакции). Недостаток энергии система заимствуют из окружающей среды, процесс эндотермический.

3. Если <0, то > (электрическая работа меньше теплового эффекта реакции).

Гальванический элемент при изотермических условиях отдает теплоту в окружающую среду, процесс экзотермической.

Пример. Дан гальванический элемент

E=1.015B, T=279K, ∆E/∆T= - 4.02*10 -4 B/K.

Определить гальванического элемента.

Энергия Гиббса:

Изменение энтропии:

Изменение энтальпии (тепловой эффект реакции):

Таким образом, тепловой эффект химической реакции при работе данного гальванического элемента равен - 217,1 кДж/моль - это количество теплоты также выделится, если рассматриваемая реакция будет протекать вне гальванического элемента.

Стандартный (нормальный) водородный электрод. Стандартный электродный потенциал. Таблицы стандартных окислительно-восстановительных потенциалов

В электрохимии стандартный электродный потенциал, обозначаемый Eo, E0, или EO, является мерой индивидуального потенциала обратимого электрода (в равновесии) в стандартном состоянии, которое осуществляется в растворах при эффективной концентрации в 1 моль/кг и в газах при давлении в 1 атмосферу или 100 кПа (килопаскалей). Объёмы чаще всего взяты при 25 °C. Основой для электрохимической ячейки, такой как гальваническая ячейка всегда является окислительно-восстановительная реакция, которая может быть разбита на две полуреакции: окисление на аноде (потеря электрона) и восстановление на катоде (приобретение электрона). Электричество вырабатывается вследствие различия электростатического потенциала двух электродов. Эта разность потенциалов создаётся в результате различий индивидуальных потенциалов двух металлов электродов по отношению к электролиту. Вычисление стандартных электродных потенциалов

Электродный потенциал не может быть получен эмпирически. Потенциал гальванической ячейки вытекает из "пары" электродов. Таким образом, невозможно определить величину для каждого электрода в паре, используя эмпирически полученный потенциал гальванической ячейки. Для этого установлен стандартный водородный электрод, для которого этот потенциал точно определён и равен 0,00 В, и любой электрод, для которого электронный потенциал ещё неизвестен, может быть соотнесён со стандартным водородным электродом с образованием гальванической ячейки - и в этом случае потенциал гальванической ячейки даёт потенциал неизвестного электрода.

Так как электродные потенциалы традиционно определяют как восстановительные потенциалы, знак окисляющегося металлического электрода должен быть изменён на противоположный при подсчёте общего потенциала ячейки. Также нужно иметь в виду, что потенциалы не зависят от количества передаваемых электронов в полуреакциях (даже если оно различно), так как они рассчитаны на 1 моль переданных электронов. Отсюда при расчёте какого-либо электродного потенциала на основании двух других следует проявлять внимательность.

Например:

(ур-е 1) Fe3+ + 3e? --> Fe(тв) -0.036 В

(ур-е 2) Fe2+ + 2e? --> Fe(тв) -0.44 В

Для получения третьего уравнения:

(ур-е 3) Fe3+ + e? --> Fe2+ (+0.77 В)

следует умножить потенциал первого ур-я на 3, перевернуть ур-е 2 (поменять знак) и умножить его потенциал на 2. Сложение этих двух потенциалов даст стандартный потенциал ур-я 3.

Таблица стандартных электродных потенциалов

Основная статья: Таблица стандартных электродных потенциалов

Чем больше стандартные восстановительные потенциалы, тем легче их можно восстановить, другими словами, тем более сильными окислителями они являются. И наоборот: большой отрицательный потенциал означает, что данная форма является сильным восстановителем. Например, F2 имеет 2,87 В, а Li+ имеет -3,05 В, фтор - окислитель, литий - восстановитель. Таким образом, Zn2+, стандартный восстановительный потенциал которого равен -0,76 В, может быть окислен любым другим электродом, стандартный потенциал которого больше -0,76 В. (напр., H+(0 В), Cu2+(0,16 В), F2(2,87 В)) и может быть восстановлен любым электродом, стандартный потенциал которого меньше -0,76 В (напр., H?(-2,23 В), Na+(-2,71 В), Li+(-3,05 В)).В гальванической ячейке, где самопроизвольная окислительно-восстановительная реакция заставляет ячейку производить электрический потенциал, Энергия Гиббса ДGo должна быть отрицательной, в соответствии со следующим уравнением:

ДGoяч = -nFEoяч

где n это количество молей электронов на моль продуктов, а F является постоянной Фарадея, ~96485 Кл/моль. Таким образом применимы следующие правила:

если Eoяч> 0, тогда процесс самопроизвольный (гальваническая ячейка)

если Eoяч< 0, тогда процесс несамопроизвольный (электролитическая ячейка)

Нестандартные условия

Стандартные электродные потенциалы даны при стандартных условиях. Однако, реальные ячейки могут действовать и при нестандартных условиях. При данном стандартном потенциале, потенциал при нестандартных эффективных концентрациях может быть вычислен с использованием уравнения Нернста:

Величины E0 зависят от температуры (кроме стандартного водородного электрода) и обычно относятся к стандартному водородному электроду при этой температуре. Для конденсированных фаз, величины потенциалов также зависят от давления.

Потенциал. Из курса физики известно, что электрический потенциал- работа по перемещению единичного положительного заряда из - данной точки пространства в бесконечность. Каждый электрод обладает каким-то электрическим потенциалом. Абсолютное значение потенциала электрода определить нельзя. Можно лишь сравнивать потенциалы различных электродов друг с другом. Для этого надо два электрода объединить в электрохимическую цепь. Для этого металлические части соединяются проводником, а растворы электролитов, в которые они погружены-стеклянной трубкой, заполненной раствором электролита (обычно хлорида калия). Эту трубку называют электролитическим ключом или солевым мостиком. Она обеспечивает ионную проводимость между растврами. Таким образом возникает замкнутая цепь или гальванический элемент, который показан на рис. 3.

Разность электрических потенциалов двух электродов в такой цепи называют электродвижущей силой силой цепи ЭДС(Рис. 4. Электрохимическая цепь со стандартным водородным электродом: -стандартный водородный электрод, 2-исследуемый электрод, 3 - электролитический ключ). Значение ЭДС может быть измерено, что позволяет сравнивать потенциалы электродов друг с другом. Обычно в качестве электрода, относительно которого определяют потенциалы всех систем, используют стандартный водородный электрод. Его потенциал условно принимают равным нулю.

Таким образом., электродным потенциалом называют ЭДС электрохимической цепи-гальванического элемента, составленного из исследуемого электрода и стандартного водородного электрода. Такая цепь изображена на рис. 4. Электродный потенциал обычно обозначают буквой Е.

Электрод, относительно которого производится измерение потенциала, называется электродом сравнения. Кроме водородного, в качестве электродов сравнения используют хлорсеребряный,каломельный и некоторые другие. Во всех случаях потенциал электрода сравнения принимается равным нулю. Можно перейти от одной шкалы потенциалов к другой. Например стандартный потенциал цинкового электрода по водородной шкале равен -- 0,76 В, а потенциал хлорсеребряного электрода + 0,22 В (по той же шкале). Следовательно, потенциал цинкового электрода по шкале хлорсеребряного электрода будет равен: -- 0,76 -- 0,22 = 0,98 В. Измерение электродных потенциалов.

Точно измерить электродный потенциал достаточно трудно, так как необходимо, чтобы в процессе измерения не нарушалось равновесие на электродах. По этой причине невозможно получить точное значение Е с помощью обычного вольтметра: если мы замкнем цепь, используя вместо проводника вольтметр, то в ней начнет протекать довольно большой ток, который нарушит равновесие на электродах. Для измерения можно использовать специальные вольтметры с высоким входным сопротивлением (более 1012 Ом). При включении в цепь такого прибора протекающий ток слишком мал для оказания существенного влияния на электродное равновесие.

Стандартный электродный потенциал-это потенциал электрода при стандартных условиях, его обозначают символом Е°. Эти потенциалы определены для многих окислительно-восстановительных систем и обычно приводятся в химических справочниках. Если электроды (на пример, металлические электроды 1-го рода) расположить в порядке возрастания потенциала, то мы получим таблицу, называемую рядом стандартных электродных потенциалов. Этот ряд часто называют рядом напряжений, однако этот термин устарел и его лучше не использовать.

При помощи ряда стандартных электродных потенциалов можно характеризовать некоторые химические свойства металлов. Например, его применяют для выяснения, в какой последовательности восстанавливаются ионы металлов при электролизе, а также при описании других свойств металлов.

Чем меньше алгебраическая величина потенциала, тем выше восстановительная способностьэтого металла и тем ниже окислительная способность его ионов. Как следует из этого ряда, металлический литий - самый сильный восстановитель, а золото-самый слабый. И наоборот, ион золота Аu3+-самый сильный окислитель, а ион лития Li+ -самый слабый.

Каждый металл в ряду стандартных электродных потенциалов обладает способностью вытеснять все следующие за ним металлы из растворов их солей. Однако это не означает, что вытеснение обязательно происходит во всех случаях. Например, алюминий вытесняет медь из раствора хлорида меди (II) СuСl2, но практически не вытесняет ее из раствора сульфата меди (II) CuS04. Это объясняется тем, что хлорид-ион Сl- быстро разрушает защитную поверхностную пленку на алюминии, а сульфат-ион SO4 2-практически не разрушает ее.

Все металлы, имеющие отрицательные значения стандартных электродных потенциалов, т.е. стоящие в ряду до водорода, вытесняют водород из разбавленных кислот, анионы которых не проявляют окислительных свойств (например, из НСl или разбавленной H2S04) и растворяются в них. Однако есть и исключения. Например, свинец практически не растворяется в серной кислоте. Это обусловлено образованием на поверхности металла защитной пленки труднорастворимого сульфата свинца PbS04, который затрудняет контакт металла с раствором кислоты. Поэтому можно сделать вывод, что пользоваться рядом стандартных электродных потенциалов следует с учетом всех особенностей рассматриваемых процессов.

Стандартные потенциалы окислительно-восстановительных реакций . Возможность протекания любой окислительно-восстановительной реакции в реальных условиях обусловлена рядом причин: температурой, природой окислителя и восстановителя, кислотностью среды, концентрацией веществ, участвующих в реакции, и т. д. Учесть все эти факторы бывает трудно, но, помня о том, что любая окислительно-восстановительная реакция протекает с переносом электронов от восстановителя к окислителю, можно установить критерий возможности протекания такой реакции.

Количественной характеристикой окислительно-восстановительных процессов являются нормальные окислительно-восстановительные потенциалы окислителей и восстановителей (или стандартные потенциалы электродов).

Чтобы понять физико-химический смысл таких потенциалов, необходимо проанализировать так называемые электрохимические процессы.

Химические процессы, сопровождающиеся возникновением электрического тока или вызываемые им, называются электрохимическими.

Чтобы понять природу электрохимических процессов, обратимся к рассмотрению нескольких достаточно простых ситуаций. Представим себе металлическую пластинку, погруженную в воду. Под действием полярных молекул воды ионы металла отрываются от поверхности пластинки и гидратированными переходят в жидкую фазу. Последняя при этом заряжается положительно, а на металлической пластинке появляется избыток электронов. Чем дальше протекает процесс, тем больше становится заряд, как пластинки, так и жидкой фазы.

Благодаря электростатическому притяжению катионов раствора и избыточных электронов металла на границе раздела фаз возникает так называемый двойной электрический слой, который тормозит дальнейший переход ионов металла в жидкую фазу. Наконец, наступает момент, когда между раствором и металлической пластинкой устанавливается равновесие, которое можно выразить уравнением:

или с учетом гидратации ионов в растворе:

Состояние этого равновесия зависит от природы металла, концентрации его ионов в растворе, от температуры и давления.

При погружении металла не в воду, а в раствор соли этого металла равновесие в соответствии с принципом Ле Шателье смещается влево и тем больше, чем выше концентрация ионов металла в растворе. Активные металлы, ионы которых обладают хорошей способностью переходить в раствор, будут в этом случае заряжаться отрицательно, хотя в меньшей степени, чем в чистой воде.

Равновесие можно сместить вправо, если тем или иным способом удалять электроны из металла. Это приведет к растворению металлической пластинки. Наоборот, если к металлической пластинке подводить электроны извне, то на ней будет происходить осаждение ионов из раствора.

При погружении металла в раствор на границе раздела фаз образуется двойной электрический слой. Разность потенциалов, возникающую между металлом и окружающей его жидкой фазой, называют электродным потенциалом. Этот потенциал является характеристикой окислительно-восстановительной способности металла в виде твердой фазы.

У изолированного металлического атома (состояние одноатомного пара, возникающее при высоких температурах и высоких степенях разрежения) окислительно-восстановительные свойства характеризуются другой величиной, называемой ионизационным потенциалом. Ионизационный потенциал -- это энергия, необходимая для отрыва электрона от изолированного атома.

Абсолютное значение электродного потенциала нельзя измерить непосредственно. Вместе с тем не представляет труда измерение разности электродных потенциалов, которая возникает в системе, состоящей из двух пар металл - раствор. Такие пары называют полуэлементами. Условились определять электродные потенциалы металлов по отношению к так называемому стандартному водородному электроду, потенциал которого произвольно принят за ноль. Стандартный водородный электрод состоит из специально приготовленной платиновой пластинки, погруженной в раствор кислоты с концентрацией ионов водорода 1 моль/л и омываемой струёй газообразного водорода под давлением 105 Па, при температуре 25 °С.

Ряд стандартных электродных потенциалов. Если пластинку металла, погруженную в раствор его соли с концентрацией ионов металла, равной 1 моль/л, соединить со стандартным водородным электродом, то получится гальванический элемент. Электродвижущая сила этого элемента (ЭДС), измеренная при 25 °С, и характеризует стандартный электродный потенциал металла, обозначаемый обычно как Е°.

Стандартные потенциалы электродов, выступающих как восстановители по отношению к водороду, имеют знак “-”, а знак “+” имеют стандартные потенциалы электродов, являющихся окислителями.

Металлы, расположенные в порядке возрастания их стандартных электродных потенциалов, образуют так называемый электрохимический ряд напряжений металлов: Li, Rb, К, Ва, Sr, Ca, Na, Mg, Al, Mn, Zn, Cr, Fe, Cd, Co, Ni, Sn, Pb, H, Sb, Bi, Cu, Hg, Ag, Pd, Pt, Au.

Ряд напряжений характеризует химические свойства металлов:

1. Чем более отрицателен электродный потенциал металла, тем больше его восстановительная способность.

2. Каждый металл способен вытеснять (восстанавливать) из растворов солей те металлы, которые стоят в электрохимическом ряду напряжений металлов после него.

3. Все металлы, имеющие отрицательный стандартный электродный потенциал, т. е. находящиеся в электрохимическом ряду напряжений металлов левее водорода, способны вытеснять его из растворов кислот.

Как и в случае определения значения Е° металлов, значения Е° неметаллов измеряются при температуре 25 °С и при концентрации всех атомных и молекулярных частиц, участвующих в равновесии, равной 1 моль/л.

Алгебраическое значение стандартного окислительно-восстановительного потенциала характеризует окислительную активность соответствующей окисленной формы. Поэтому сопоставление значений

стандартных окислительно-восстановительных потенциалов позволяет ответить на вопрос: протекает ли та или иная окислительно-восстановительная реакция?

Количественным критерием оценки возможности протекания той или иной окислительно-восстановительной реакции является положительное значение разности стандартных окислительно-восстановительных потенциалов полуреакций окисления и восстановления.

ВОДОРОДНЫЙ электрод в электрохимии - обычно платинированная пластина, погруженная в раствор кислоты с определенной концентрацией ионов Н+ и омываемая газообразным водородом. При давлении водорода 0,1 МПa и термодинамической активности его ионов, равной единице, потенциал водородного электрода условно принят равным нулю. Такой водородный электрод называется стандартным, он служит электродом сравнения, от которого отсчитывают потенциалы других электродов.

32 Термодинамика протекания электродных процессов. Самопроизвольность протекания окислительно-восстановительных реакций. Связь ЭДС гальванического элемента с энергией Гиббса. Связь ЭДС с константой равновесия

Любые химические реакции связаны с перемещением электронов, поэтому могут быть использованы для получения электрического тока. При этом источником электрической энергии является энергия, освобождающаяся при химической реакции. Такое превращение энергии химической реакции в электрическую возможно лишь при помощи специального устройства, называемого гальваническим элементом. Оно позволяет направлять поток электронов по металлическим проводникам.

Простое сжигание водорода сопровождается большим выделением тепла. Если его провести при постоянном объеме, например, в калориметрической бомбе, то ДU = -284,5 кДж/моль. Если эту же реакцию осуществить в гальваническом элементе электрохимическим путем, то часть этой убыли внутренней энергии может быть использована для получения электрического тока. Схема такого гальванического элемента показана на рис: IX.1. В водный раствор (например, NaOH) погружены два платиновых электрода. Левый электрод омывается пузырьками водорода, а правый - кислородом. Водород в левой части этого гальванического элемента растворяется в платине и ионизируется. Вследствие большого сродства к молекулам воды некоторое количество протонов переходит в слой раствора, непосредственно прилегающий к электроду. При этом образуются ионы гидроксония Н3О+ - они обозначены плюсами в правой части рис. IX. 1, а электроны (минусы) остаются на поверхности платинового электрода. Из-за электростатического притяжения между электронами и ионами гидроксония последние остаются вблизи электрода и не уходят в объем раствора. Благодаря этому на границе металл-раствор возникает так называемый двойной электрический слой, подобный двум обкладкам конденсатора. На поверхности правого электрода происходит реакция образования ионов гидроксила:

3/2O2г + H2Oж + 2e = 2OH-

в результате которой из металла удаляются два электрона. Поверхность металла поэтому заряжается положительно и на ней также образуется двойной электрический слой, но противоположного знака. Если соединить левый и правый электроды металлическим проводником, то по нему потечет электрический ток. Стрелка на рис. IX.1 указывает направление потока электронов. Разность электрических потенциалов на электродах разомкнутого гальванического элемента называется его электродвижущей силой (э. д. с.).

Очевидно поток электронов, возникающий в элементе может быть использован для производства работы, например, для вращения электрического мотора. Протекание тока приводит к уменьшению зарядов двойных электрических слоев. Поэтому ионы Н3О+ и ОН- получают возможность удаляться от электродов и образовывать в растворе нейтральные молекулы воды. Одновременно вследствие реакций на электродах вновь восстанавливаются двойные слои. Происходящие на электродах и в растворе изменения отражаются следующими уравнениями:

H2г = 2H+ + 2e;

3/2 O2г + H2Oж + 2e = 2OH-;

2H+ + 2OH- = 2H2Oж,

сумма которых представляет собой реакцию образования воды:

H2г + 1/2O2г = H2Oж,

Таким образом, одну и ту же реакцию образования воды из элементов можно осуществить двумя различными способами. Какой из этих способов выгоднее с точки зрения превращения энергии химической реакции в работу? В первом способе при сжигании водорода в калориметрической бомбе (V = const) при 298 К уменьшение внутренней энергии равно количеству выделившегося тепла -ДU = 284,5 кДж/моль, а работа равна нулю.

Во втором случае часть этого изменения внутренней энергии (ДG) может быть превращена в электрическую работу. Если реакция в гальваническом элементе проводится обратимо, то сопровождающая ее убыль энергии Гиббса полностью идет на производство электрической работы.

В рассматриваемом случае ДG0 = -237,2 кДж/моль и, следовательно, только?47 кДж/моль переходит в тепло. Этот пример показывает, что вообще энергию, освобождающуюся при горении природных видов топлива, выгоднее непосредственно преобразовывать в электрическую, так как к. п. д. тепловых машин и тепловых электростанций невелик. Описанный водородно-кислородный элемент является примером так называемых топливных элементов.

Работы по созданию таких элементов получили в последнее время широкое развитие в связи с новыми задачами техники. В этих элементах топливо и окислитель должны храниться отдельно и подаваться к электродам, на которых осуществляются электрохимические реакции. При этом элемент может работать непрерывно, если к нему подводятся реагенты и отводятся продукты реакции, что особенно удобно при использовании жидких и газообразных веществ. Вместо сжигания угля возможно использовать реакцию Ст + О2г = СО2г для получения электрического тока.

Очевидно, что в реальных условиях гальванические элементы работают необратимо, поэтому в работу превращается лишь часть изменения энергии Гиббса реакции, протекающей в элементе. Повторим, что гальванический элемент может работать при условии протекания в нем самопроизвольной химической реакции или какого-либо другого самопроизвольного процесса, сопровождающегося убылью энергии Гиббса.

Если к рассматриваемому гальваническому элементу приложить извне достаточно большую разность потенциалов, превышающую его э. д. с. и имеющую противоположное направление, то будет происходить разложение воды с выделением водорода и кислорода. Таким образом, процессы получения электрического тока в гальванических элементах и электролиза взаимно противоположны.

Особенностью электрохимического процесса в гальваническом элементе является важная для теории возможность его осуществления в условиях весьма близких к обратимости. Это достигается благодаря потенциометрическому методу, в котором э. д. с. изучаемого гальванического элемента практически полностью компенсируется с помощью противоположно направленной э.д. с. внешнего источника. Такой прием позволяет измерять э.д.с. при отсутствии тока в цепи, т.е. когда элемент не работает, а его э.д.с. максимальна. Контроль за отсутствием тока проводят гальванометрами (нуль-инструментами) высокой чувствительности. Они дают отклонение при прохождении тока силой 10-8 - 10-9 А. Такой слабый ток при прохождении через электролит даже в течение многих лет не смог бы выделить сколько-нибудь заметных количеств вещества.

Рис. IX.2. Схема измерения э.д.с. методом компенсации.

Принципиальная схема измерения э. д. с. гальванического элемента компенсационным методом показана на рис. IX.2. Постоянный ток от вспомогательной батареи ВБ подается на концы реохорда АВ - проволоки с постоянным сечением. Поэтому падение напряжения вдоль реохорда пропорционально длине соответствующего отрезка на прямой АВ. С помощью подвижного контакта С можно отбирать произвольную часть падения напряжения между точками А и В. Из рис. IX.2 видно, что напряжение, снимаемое с любого участка реохорда, например АС, направлено навстречу э. д. с. элемента X.

Передвигая контакт С по реохорду, находят такое положение, при котором нуль-гальванометр Г указывает отсутствие тока в цепи АХГС. Это означает, что падение потенциала от ВБ на отрезке АС полностью компенсирует э. д. с. элемента X.

Если э. д. с. вспомогательной батареи ВБ равна ЕБ, то э. д. с. элемента X ЕX определяется из пропорции:

ЕХ/ЕБ = АС/АВ, откуда ЕX = (АС/АВ) ЕБ.

Для того, чтобы откалибровать вспомогательную батарею перед измерениями ЕX, вместо элемента X включают другой, э. д. с. которого точно известна, например стандартный элемент Вестона. Устройство этого элемента будет описано ниже.

Повторим, что определяемая таким образом э. д. с. максимальна, так как при измерении отсутствует падение потенциала как вне, так и внутри элемента. Работа, совершаемая элементом с ничтожно малым током при обратимом проведении процесса была бы максимальной.

Теоретический и практический интерес представляют гальванические элементы с металлическими электродами. Рассмотрим, например, реакцию Znт + CuSО4водн. р-р. = ZnSО4водн. р-р + Cuт или Znт + Cu2+ = Zn+2 + +Cuт, которая может быть осуществлена двумя путями. Один из них является полностью необратимым. Цинковую пластинку помещают в водный раствор медного купороса, при этом происходит выделение металлической меди и растворение цинка. Электроны переходят от цинка непосредственно к меди, и реакция протекает без производства работы, а сопровождается только выделением тепла. В случае водородно-кислородного элемента, можно создать условия, в которых электроны будут двигаться по металлическому проводнику и совершать работу. Это достигается в гальваническом элементе, где цинковый электрод погружен в раствор ZnSO4, а медный электрод в раствор СиSO4.

Растворы отделены друг от друга пористой (керамической) перегородкой, препятствующей их смешению, но обеспечивающей прохождение электрического тока вследствие диффузии ионов через поры. Такой элемент, на электродах которого образуются двойные электрические слои, был сконструирован русским электрохимиком Б.С. Якоби.

Величина и знак электрических зарядов в двойных слоях пределяются работой удаления электрона из металла и энергией гидратации его ионов. В раствор легко будут переходить те металлы, у которых меньше работа выхода электронов и больше энергия гидратации ионов, т.е. менее благородные металлы. Так как цинк менее благороден, чем медь, то он зарядится более отрицательно по сравнению с медью. Если соединить оба электрода металлическим проводником, то электроны будут перемещаться от цинка к меди. Вследствие этого ионы цинка Zn2+ не удерживаются в двойном слое притяжением электронов, переходят в объем раствора, а перешедшие на медный электрод электроны разряжают ионы Cu2+, переводя их в металлическое состояние.

Следовательно, в процессе работы элемента происходит растворение цинкового электрода и осаждение меди на медном электроде. Чтобы элемент работал, цепь должна быть замкнутой, т.е. между растворами должен быть электрический контакт. Перенос тока внутри элемента осуществляется ионами. В элементе переход электронов от цинка к меди происходит не в условиях непосредственного контакта этих металлов, а при помощи проводника. Суммарная реакция в элементе складывается из двух пространственно разделенных электродных процессов.

Реакции, протекающие в гальванических элементах являются окислительно-восстановительными. В рассматриваемом случае окисляется цинк, который теряет электроны, а восстанавливается медь, приобретающая электроны. Вообще любая окислительно-восстановительная реакция может быть использована для получения электрического тока с помощью гальванического элемента. Как упоминалось, такой реакцией может быть горение любого вида топлива.

При схематической записи гальванических элементов границы между фазами отмечаются вертикальными линиями. При условии, что на границе двух жидкостей (в данном случае растворов ZnSO4 и CuSO4) нет разности потенциалов, ее обозначают двумя вертикальными линиями. Схема рассмотренного элемента имеет следующий вид:

Zn ? ZnSO4 ? CuSO4 ? Cu.

Принято записывать подобные схемы таким образом, чтобы левый электрод был отрицательным (электроны текут по металлическому проводнику слева направо и в том же направлении переносится ионами положительное электричество внутри элемента). Такая запись отвечает протеканию реакции, сопровождающейся убылью энергии Гиббса и положительной величине э. д. с.

Гальванические элементы могут быть построены не только с использованием водных растворов электролитов, но и с, применением расплавов. Примером такого элемента может служить цепь Ag ? AgBr ? Br2, в которой левый электрод серебряный, а правый - представляет собой графит, омываемый газообразным бромом, а электролитом является расплавленное AgBr. На левом электроде растворяется серебро: Agт > Ag+ + e, а на правом - адсорбированный графитом бром: 1/2Br2г + e = Br-. Таким образом, в элементе происходит реакция: Agт + 1/2Br2г = AgBrж.

В последнее время приобрели большое значение гальванические элементы с твердыми электролитами, имеющими кислородную проводимость (см. гл. VIII), например,

Левый электрод представляет собой смесь железа и его оксида. Здесь происходит реакция окисления железа ионами О2-, приходящими через твердый электролит. При этом освобождаются электроны, и электрод получает отрицательный заряд. На правом электроде, состоящем из смеси Мо и МоО3, происходит восстановление оксида. Это сопровождается поглощением электронов таким образом, что электрод заряжается положительно, а освободившиеся ионы О2 могут мигрировать через электролит к левому электроду. Реакция на электроде изображается следующим уравнением 3Feт + 3О2- = 3FеОт + 6е; на правом электроде: МоО3т + 6е = Мот + 3О2-.

Заметим, что сумма этих двух реакций 3Fет + МоОт = 3FеОт + Мот есть процесс восстановления оксида молибдена железом, самопроизвольное протекание которого является источником электрической энергии производимой элементом.

Из рассмотренных примеров видно, что реакцию, протекающую в гальваническом элементе, можно представить в виде двух отдельных электродных реакций.

Можно предположить, что э. д. с. гальванического элемента должна зависеть от природы реагирующих веществ, их концентраций и температуры. Чтобы найти выражения для этих зависимостей, необходимо рассмотреть термодинамические соотношения, характеризующие работу гальванического элемента.

Пусть в гальваническом элементе протекает реакция: M + Nn+ = Mn+. Работа, производимая элементом при расходе 1 моля М, определяется произведением количества электричества nF на величину э. д. с. Е, т.е. W = nFE, где п - число молей электронов, протекающих через цепь; F - число Фарадея, равное 96493 Кл. Например, для реакции Zn + Cu2+ = Zn2+ + Cu, n = 2. Если элемент работает обратимо при постоянных давлении и температуре, то произведенная им работа равна убыли энергии Гиббса, т.е. ДG = W:

ДG = -nFE = -96493E. (IX.1)

Если элемент работает необратимо, то nFE < -ДG, т.е. э.д.с. меньше, чем при обратимом проведении реакции. Выражая E в В, получаем величину ДG в Дж.

Таким образом, если известно стехиометрическое уравнение протекающей в гальваническом элементе реакции и табличные данные об изменении энергии Гиббса, можно рассчитать э. д. с.

Так, для рассмотренного выше водородно-кислородного элемента, работающего за счет энергии, освобождающейся при реакции Н2г + 1/2О2г = Н2Ож, для которой ДG 0

298 = -237200 Дж, п = 2, рH2 = рO2 = 1.

/n·96493 = -(-237200/2)·96493 ?? 1,2 В.

Из уравнения IX.1 следует, что измерение э. д. с. гальванического элемента позволяет найти изменение энергии Гиббса протекающей в нем реакции. Поэтому метод э. д. с. широко используется для определения термодинамических свойств веществ.

В приведенном выше примере этот метод позволяет найти ДG реакции восстановления МоО3 железом. Зная стандартное изменение энергии Гиббса при образовании FеО(ДG 0 f FeO) по найденному значению ДG, можно найти энергию Гиббса образования МоО3 из уравнения:

Зависимость э. д. с. от температуры. Поскольку энергия Гиббса есть функция температуры, то и э. д. с. гальванического элемента также должна зависеть от температуры.

Для нахождения этой зависимости воспользуемся уравнением Гиббса-Гельмгольца: ДG = ДH + T(?ДG/?T)p подставив в него выражение ДG через э. д. с. При этом получим -nEF = ДH - TnF(dE/dT) или

ДH = nF, (IX.2)

ДH = W - TnF(dE/dT). (IX.3)

Сначала представим себе, что гальванический элемент, помещенный в калориметр, является коротко замкнутым. В этом случае производимая им электрическая энергия полностью превратится в тепло, количество которого равно энтальпии реакции ДH, и, следовательно, работа будет равна нулю.

Пусть теперь реакция в элементе осуществляется обратимо, например, провода от электродов выведены из калориметра, подведены к мотору, и электрический ток производит работу. Тогда часть освобождающейся при реакции энергии превратиться в электрическую работу W, а другая часть Q останется в виде тепла и будет измерена в калориметре. Согласно первому закону термодинамики

ДH = W - Q (IX.4)

Сопоставление уравнений (IX.3) и (IX.4) показывает, что

Q = TnF(dE/dT). (IX.5)

Очевидно, чем ближе протекание реакций в гальваническом элементе к условиям обратимости, тем бомльшая часть ДG превращается в работу. Величина Q, которая характеризует связанную энергию, определяет количество тепла, неизбежно выделяющегося (или поглощающегося) в том случае, когда элемент работает обратимо. Так как (?ДG/?T)р = -ДS и (?ДG/?Т)р = -пF(dЕ/dТ), то

ДS = nF(dE/dT), (IX.6)

и, следовательно, измерения температурной зависимости э. д. с. позволяют вычислить изменение энтропии при реакции, протекающей в гальваническом элементе. Следует подчеркнуть, что гальванический элемент может работать как с выделением, так и с поглощением тепла. В последнем случае он превращает в работу тепло окружающей среды. Это не находится в противоречии со вторым законом термодинамики, так как процессы в гальванических элементах не являются непрерывными и прекращаются при израсходовании материала электродов.

Знак и величина Q определяют температурную зависимость э. д. с. Если при работе элемента выделяется тепло, т.е. Q < 0, то температурный коэффициент э. д. с. dE/dT < 0. Это наиболее часто встречающийся случай, так как большинство элементов работает с выделением тепла. Наоборот, при Q > 0 э. д. с. растет с температурой.

Для гальванических элементов, служащих в качестве эталонов, при электрических измерениях подбирают такие реакции, в которых Q весьма мало и dЕ/dТ близко к нулю. Так, зависимость э. д. с. от температуры широко используемого стандартного элемента Вестона выражается уравнением:

E = 1,0183 - 0,0000406 (t - 20) В.

Он составлен по схеме: Cd ? CdSO4 ? ? Hg2SO4 ? Hg, и в нем протекает реакция Cdт + 2Hg+ = Cd2+ + 2Hgж1.

В качестве примера применения уравнений (IX.4) и (IX.5) вычислим величину dE/dT для элемента, в котором протекает реакция Znт + 2AgCl = ZnCl2 + 2Agт

ДH = 217760 Дж, а E = 1,015 В при 0° C. Отсюда

Q = -ДH = 217760 - 2·96493·1,015 = 21880 Дж.

dE/dT = -218807(273·2·96493) ?? - 4·10-4 В/К.

Примером элемента с положительным температурным коэффициентом является ячейка Hg ? Hg2Cl2, KCl ? KOH ? Hg2O ? Hg, в которой протекает реакция Hg2Cl2 + 2KOH = 2KCl + Hg2O + H2O.

Левый электрод этого элемента называемый каломельным, часто используется в электрохимических измерениях. Он состоит из жидкой ртути, находящейся в контакте с твердой каломелью Hg2Cl2 и водным раствором какого-либо сильного электролита, например KС1. Реакция, идущая в рассматриваемом элементе, является эндотермической, ДH = 13720 Дж, а W = 31570 Дж. Таким образом Q = 13720 + 31570 = 45240 Дж, т.е. элемент поглощает из окружающей среды тепло, равное 45240 Дж. Часть этого тепла, равная 31570 Дж, идет на производство работы.

Зависимость э. д. с. от концентраций электролитов, участвующих в реакции, может быть: найдена при помощи уравнения изотермы химической реакции.

Пусть в гальваническом элементе протекает реакция A + B = 2D, при этом ДG = RTlnK + RTln (c 2 D/cAcB). Подставляя вместо ДG величину - nEF и разделив обе части уравнения на -пF, получим E = RTln(K/nF) - . или, обозначая величину RTlnK/nF, зависящую только от температуры, через E0, будем иметь:

E = E0 - (RT/nF. (IX.7.)

Величина E0 называется стандартной э. д. с. элемента. Она характеризует элемент, в котором концентрации всех участвующих в реакции веществ равны единице, а изменение энергии Гиббса равно стандартному ДG0. Заменив в уравнении (IX.7) натуральный логарифм десятичным, получим для температуры 25 °C.

Очевидно, что для электролитов нельзя просто пользоваться аналитическими концентрациями соответствующих веществ, а необходимо учитывать диссоциацию и взаимодействие ионов. В связи с этим возникает задача определения активности электролитов.

Для обратимой окислительно-восстановительной полуреакции Ох + ne ↔ Red зависимость окислительно-восстановительного потенциала Е от активностей окисленной (Ох) и восстановленной (Red) форм выражается уравнением Нернста:

где - Е° Ох/Red - стандартный электродный потенциал. При 20 °С

Если в окислительно-восстановительной полуреакции участвуют ионы водорода, то в уравнение Нернста входит активность ионов водорода:

Окислительно-восстановительная реакция является сочетанием двух полуреакций. Для определения направления реакции необходимо найти разность стандартных потенциалов этих полуреакций. Если разность - положительное число, то это указывает на протекание реакции слева направо. При этом необходимо помнить, что обе полуреакции должны быть записаны в форме восстановления. Согласно соглашению о знаках электродных потенциалов (Стокгольм. 1953) термин «электродный потенциал» относится исключительно к полуреакциям, записанным в форме восстановления. Вычитая одну полуреакцию из другой, составляют уравнение полной окислительно-восстановительной реакции. Разность стандартных потенциалов находят, не изменяя знаков потенциалов, приведенных в таблицах, если последние составлены в соответствии с соглашением о знаках электродных потенциалов.

ПРИМЕР 1. Определите, в каком направлении пойдет реакция между железом(III) и иодидом калия?

Решение. Записываем уравнения соответствующих полуреакций и находим по таблицам значения стандартных потенциалов:

Записываем полную окислительно-восстановительную реакцию, вычитая второе уравнение из первого:

Разность потенциалов составляет

Положительная разность потенциалов указывает на протекание реакции в направлении окисления иодид-иона железом(III). К тому же выводу приходим, вычитая первую полуреакцию из второй, поскольку в этом случае разность потенциалов будет отрицательной.

Положительная разность потенциалов указывает на протекание реакции в направлении окисления иодид-иона железом (III).К тому же выводу приходим, вычитая первую полуреакцию из второй, поскольку в этом случае разность потенциалов будет отрицательной.

Глубина протекания реакции определяется константой равновесия. Реакцию окисления – восстановления

можно представить в виде двух полуреакций

Запишем для каждой полуреакции уравнение Нернста

При равновесии E 1 - E 2 , поэтому

После преобразования получаем:

Под знаком логарифма стоит выражение для константы равновесия реакции окисления - восстановления, поэтому

Здесь п - общее число электронов, участвующих в реакции окисления -восстановления.

ПРИМЕР 2. Рассчитайте термодинамическую константу равновесия реакции между железом (III) и иодидом калия.



Решение. Величины стандартных потенциалов обеих полуреакций даны в предыдущем примере. Подставляем их в формулу (5-1):

ПРИМЕР 3. Рассчитайте равновесные концентрации железа(III), железа(II), олова(II) и олова(IV) в растворе после установления равновесия реакции между 0.1 М раствором FeCl 3 и 0.1 М раствором SnCl 2 , приняв ионную силу равной нулю.

Решение. Рассчитываем константу равновесия реакции

2Fe(III) + Sn(II) ↔ 2Fe(II) + Sn(IV)

из величин стандартных потенциалов полу реакций:

равна исходной концентрации железа(III), концентрация олова(II) - избыточной концентрации хлорида олова(II), т.е. 0.05 М, а концентрация олова(IV) – концентрации олова(II). вступившего в реакцию: = 0.1 М;

0.05 М; - 0.05 М.

ПРИМЕР 4. Рассчитайте равновесную концентрацию железа(II) в растворе после установлении равновесия реакции между 0.01 М раствором перманганата калия и 0.05 М раствором сульфата железа(II) в 0.18 М соляной кислоте без учета ионной силы.

Решение. Рассчитаем константу равновесия реакции

МnО 4 - + 5Fe 2+ + 8Н + ↔ Mn 2+ + 5Fe 3+ + 4Н 2 О

используя табличные значения стандартных потенциалов

Константа равновесия велика, поэтому можно считать, что = 0.05 М; [Мn 2+ ] - 0.01 М; - 0.1 М.

И стандартными электродными потенциалами окислительно-восстановительных пар. Было выведено немецким физико-химиком Вальтером Нернстом .

Вывод уравнения Нернста

Нернст изучал поведение электролитов при пропускании электрического тока и открыл закон. Закон устанавливает зависимость между электродвижущей силой (разностью потенциалов) и ионной концентрацией. Уравнение Нернста позволяет предсказать максимальный рабочий потенциал, который может быть получен в результате электрохимического взаимодействия, когда известны давление и температура. Таким образом, этот закон связывает термодинамику с электрохимической теорией в области решения проблем, касающихся сильно разбавленных растворов. E = E^0 + \frac{RT}{nF} \ln\frac{a_{\rm{Ox}}}{a_{\rm{Red}}}, где

  • \ E - электродный потенциал, E^0 - стандартный электродный потенциал , измеряется в вольтах;
  • \ R - универсальная газовая постоянная , равная 8.31 Дж/(моль·K);
  • \ T - абсолютная температура;
  • \ F - постоянная Фарадея , равная 96485,35 Кл ·моль −1 ;
  • \ n - число электронов , участвующих в процессе;
  • \ {a_{\rm{Ox}}} и \ {a_{\rm{Red}}} - активности соответственно окисленной и восстановленной форм вещества , участвующего в полуреакции.

Если в формулу Нернста подставить числовые значения констант R и F и перейти от натуральных логарифмов к десятичным , то при T=298{\rm K} получим

E = E^0 + \frac{0,0592}{n} \lg\frac{a_{\rm{Ox}}}{a_{\rm{Red}}}

Связь уравнения Нернста с константой равновесия

Рассмотрим следующие реакции:

{a_{\rm{Ox}}}_1 + ne \rightleftharpoons {a_{\rm{Red}}}_1

{b_{\rm{Red}}}_2 - ne \rightleftharpoons {b_{\rm{Ox}}}_2

Для реакции а:

E" = E^0_{{ox_1}/{red}_1} + \frac{0,0592}{n} \lg\frac{[\mathrm{Ox}_1]^a}{[\mathrm{Red}_1]^a}

Для реакции b:

E = E^0_{{ox_2}/{red}_2} + \frac{0,0592}{n} \lg\frac{[\mathrm{Ox}_2]^b}{[\mathrm{Red}_2]^b}

При установившемся равновесии окислительные потенциалы обеих систем равны E" = E, или:

E^0_{{ox_1}/{red}_1} + \frac{0,0592}{n} \lg\frac{[\mathrm{Ox}_1]^a}{[\mathrm{Red}_1]^a} = E^0_{{ox_2}/{red}_2} + \frac{0,0592}{n} \lg\frac{[\mathrm{Ox}_2]^b}{[\mathrm{Red}_2]^b}

E^0_{{ox_1}/{red}_1} - E^0_{{ox_2}/{red}_2} = \frac{0,0592}{n} [ \lg\frac{[\mathrm{Ox}_2]^b}{[\mathrm{Red}_2]^b} - \lg\frac{[\mathrm{Ox}_1]^a}{[\mathrm{Red}_1]^a} ] = \frac{0,0592}{n} \lg\frac{[\mathrm{Ox}_1]^a}{[\mathrm{Red}_1]^a} \frac{[\mathrm{Ox}_2]^b}{[\mathrm{Red}_2]^b}

На основании уравнения: K_{{ox}/{red}} = \frac{[\mathrm{Ox}_1]^a}{[\mathrm{Red}_1]^a}\frac{[\mathrm{Ox}_2]^b}{[\mathrm{Red}_2]^b}

E^0_{{ox_1}/{red}_1} - E^0_{{ox_2}/{red}_2} = \frac{0,0592}{n} \lg K_{{ox}/{red}}

\frac{n(E^0_1 - E^0_2)}{0,0592} = \lg K_{{ox}/{red}},

следовательно K ox/red равна:

K_{{ox}/{red}} = 10^\frac{(E^0_1 - E^0_2)n}{0,0592}.

Рассмотрим вычисление K ox/red на примере полуреакции:

MnO_4^- +8H^+ + 5Fe^{2+} \rightleftharpoons Mn^{2+} + 5Fe^{3+} + 4H_2O

В ходе реакции протекают два ОВ-процесса - восстановление перманганат иона и окисление иона Fe 3+ по уравнениям:

MnO_4^- +8H^+ + 5e \rightleftharpoons Mn^{2+} + 4H_2O

Fe^{2+} - e \rightleftharpoons Fe^{3+}

Напишите отзыв о статье "Уравнение Нернста"

Литература

  • Корыта И., Дворжак И., Богачкова В. Электрохимия. - пер. с чеш.. - М ., 1977.
  • Дамаскин Б. Б., Петрий О.А. Основы теоретической электрохимии. - М ., 1978.

Примечания

Отрывок, характеризующий Уравнение Нернста

– Никому не поверю; я знаю, что не любит, – смело сказала Наташа, взяв письмо, и в лице ее выразилась сухая и злобная решительность, заставившая Марью Дмитриевну пристальнее посмотреть на нее и нахмуриться.
– Ты, матушка, так не отвечай, – сказала она. – Что я говорю, то правда. Напиши ответ.
Наташа не отвечала и пошла в свою комнату читать письмо княжны Марьи.
Княжна Марья писала, что она была в отчаянии от происшедшего между ними недоразумения. Какие бы ни были чувства ее отца, писала княжна Марья, она просила Наташу верить, что она не могла не любить ее как ту, которую выбрал ее брат, для счастия которого она всем готова была пожертвовать.
«Впрочем, писала она, не думайте, чтобы отец мой был дурно расположен к вам. Он больной и старый человек, которого надо извинять; но он добр, великодушен и будет любить ту, которая сделает счастье его сына». Княжна Марья просила далее, чтобы Наташа назначила время, когда она может опять увидеться с ней.
Прочтя письмо, Наташа села к письменному столу, чтобы написать ответ: «Chere princesse», [Дорогая княжна,] быстро, механически написала она и остановилась. «Что ж дальше могла написать она после всего того, что было вчера? Да, да, всё это было, и теперь уж всё другое», думала она, сидя над начатым письмом. «Надо отказать ему? Неужели надо? Это ужасно!»… И чтоб не думать этих страшных мыслей, она пошла к Соне и с ней вместе стала разбирать узоры.
После обеда Наташа ушла в свою комнату, и опять взяла письмо княжны Марьи. – «Неужели всё уже кончено? подумала она. Неужели так скоро всё это случилось и уничтожило всё прежнее»! Она во всей прежней силе вспоминала свою любовь к князю Андрею и вместе с тем чувствовала, что любила Курагина. Она живо представляла себя женою князя Андрея, представляла себе столько раз повторенную ее воображением картину счастия с ним и вместе с тем, разгораясь от волнения, представляла себе все подробности своего вчерашнего свидания с Анатолем.
«Отчего же бы это не могло быть вместе? иногда, в совершенном затмении, думала она. Тогда только я бы была совсем счастлива, а теперь я должна выбрать и ни без одного из обоих я не могу быть счастлива. Одно, думала она, сказать то, что было князю Андрею или скрыть – одинаково невозможно. А с этим ничего не испорчено. Но неужели расстаться навсегда с этим счастьем любви князя Андрея, которым я жила так долго?»
– Барышня, – шопотом с таинственным видом сказала девушка, входя в комнату. – Мне один человек велел передать. Девушка подала письмо. – Только ради Христа, – говорила еще девушка, когда Наташа, не думая, механическим движением сломала печать и читала любовное письмо Анатоля, из которого она, не понимая ни слова, понимала только одно – что это письмо было от него, от того человека, которого она любит. «Да она любит, иначе разве могло бы случиться то, что случилось? Разве могло бы быть в ее руке любовное письмо от него?»
Трясущимися руками Наташа держала это страстное, любовное письмо, сочиненное для Анатоля Долоховым, и, читая его, находила в нем отголоски всего того, что ей казалось, она сама чувствовала.
«Со вчерашнего вечера участь моя решена: быть любимым вами или умереть. Мне нет другого выхода», – начиналось письмо. Потом он писал, что знает про то, что родные ее не отдадут ее ему, Анатолю, что на это есть тайные причины, которые он ей одной может открыть, но что ежели она его любит, то ей стоит сказать это слово да, и никакие силы людские не помешают их блаженству. Любовь победит всё. Он похитит и увезет ее на край света.
«Да, да, я люблю его!» думала Наташа, перечитывая в двадцатый раз письмо и отыскивая какой то особенный глубокий смысл в каждом его слове.

Реакций.Окислительно-восстановительные электроды

И гальванические элементы

Все электроды, на которых происходят реакции с участием электронов, представляют собой окислительно-восстановительные системы. Однако принято в особую группу выделять электроды, в потенциалопределяющих реакциях которых материал электрода не участвует. Такие электроды, как правило, состоят из инертного металла с электронной проводимостью (например, платины или золота), погружённого в раствор, содержащий ионы с различной степенью окисления. Называются они окислительно-восстано­ви­тель­ны­ми (илиредокс )электродами .

В общем виде формула редокс-электрода и уравнение электродной полуреакции реакции записываются так:

Ox + ne - Û Red

где Ox - окисленная форма, Red - восстановленная форма.

К редокс-электродам относятся в первую очередь электроды, у которых Ox и Red представляют собой ионы, содержащие химические элементы в различных степенях окисления, причем электродная реакция состоит в изменении их степени окисления. Например, системам Sn 4+ ; Sn 2+ | Pt и MnO 4 - ; MnO 4 2 - | Pt соответствуют электродные реакции:

Sn 2+ Û Sn 4+ + 2e -

MnO 4 2 - Û MnO 4 - + e -

Возникновение потенциала окислительно-восстановительного элек­трода может быть рассмотрено в общих чертах с тех же позиций, что и для электродов, обратимых относительно катиона. Потенциал редокс-электрода определяется также по уравнению Нернста:


где E o Ox , Red - стандартный окислительно-восстановительный потенциал, a Ox и a Red - активности соответственно окисленной и восстановленной форм, участвующих в суммарной электрохимической реакции.

Комбинируя друг с другом окислительно-восстановительные электроды, можно получать окислительно-восстановительные гальванические элементы . Например, элемент

(-) Pt | AsO 2 - ; AsO 4 3 - || Ce 4+ ; Ce 3+ | Pt (+),

в котором при замыкании внешней цепи в приэлектродных пространствах идут такие полуреакции:

AsO 2 - + 2H 2 O - 2e - ® AsO 4 3 - + 2H + ­­­ ­ (окисление, анод)

Ce 4+ + e - ® Ce 3+ (восстановление, катод)

и суммарная реакция:

AsO 2 - + 2H 2 O + 2Ce 4+ ® AsO 4 3 - + 2H + + Ce 3+ .

Для этой реакции, проводимой в стандартных условиях, когда активности всех ионов равны друг другу и равны 1М, в соответствии с уравнением Нернста и уравнением изотермы химической реакции можно записать:


С другой стороны, стандартная ЭДС может быть рассчитана как разность стандартных окислительно-восстановительных потенциалов:

E 0 = E o + - E o - = E o Ce 4+ /Ce 3+ - E o AsO4 3+ /AsO2 - = 1,44 - 0,56 = 0,88 В.



Зная значение ЭДС, можно вычислить константу равновесия данной реакции:



и, следовательно, K a = 10 30 .

Такая большая величина константы равновесия говорит о том, что равновесие в реакции настолько сильно сдвинуто вправо, что реакция идет практически до конца и может быть использована в аналитических целях (например, для цериметрического определения солей мышьяка).

Результирующее выражение для вычисления константы равновесия электрохимических реакций выглядит так:

K р » K a = 10 Е n / 0,0591 .

Таким образом, измеряя или вычисляя по справочным стандартным значениям окислительно-восстановительных потенциалов ЭДС ред­окс-элементов, мож­но рассчитывать константы равновесия соответствующих окислительно-вос­ста­но­вительных реакций и делать выводы о глубине их протекания. С использованием таких данных были разработаны методики окислительно-восста­но­ви­тельного титрования, применяемые в фармацевтической практике (перманга­на­то­метрия, броматометрия, нитритометрия, цериметрия и др.).

Разумеется, с помощью метода ЭДС можно вычислять константы равновесия и связанные с ними величины, например, DG o , ТDS , не только для реакций, протекающих в окислительно-восстано­ви­тель­ных, но и в любых других гальванических элементах.


V. Х И М И Ч Е С К А Я К И Н Е Т И К А И К А Т А Л И З

ГЛАВА 12

ФОРМАЛЬНАЯ И МОЛЕКУЛЯРНАЯ КИНЕТИКА

Предмет химической кинетики и её значение для фармации,

Медицины и биологии

Химическая кинетика - это учение о скоростях и механизмах химических реакций. В соответствии с этим определением целью исследования в химической кинетике является: 1) экспериментальное определение скорости реакции и установление её зависимости от таких параметров, как концентрация реагирующих веществ, температура, присутствие катализатора; и 2) установление механизма реакции, то есть числа стадий, из которых она состоит, и природы образующихся на каждой из этих стадий промежуточных веществ.



Этим кинетика отличается от термодинамики, которая, не вдаваясь в механизм процесса, исследует влияние на него различных факторов и на этой основе делает вывод о принципиальной возможности или невозможности процесса, но ничего не говорит о его скорости.

Ни в одно уравнение термодинамики не входит время. Поэтому, получая с помощью термодинамических методов заключение о том, при каких условиях данная реакция пойдёт в нужном направлении, каковы будут при этом характеристики равновесия (и в первую очередь теоретический равновесный выход продуктов), исследователь не имеет никакой информации о времени, которое требуется для достижения равновесия.

Время протекания одних химических реакций может измеряться годами и даже тысячелетиями, других - при тех же условиях - минутами или секундами, третьих - долями секунды (реакции, идущие с «взрывной» скоростью). Выяснение того, какова будет скорость реакции при данных условиях и есть ли возможность влияния на эту скорость чрезвычайно важны для практических целей, как в лаборатории, так и в химическом и в фармацевтическом про­из­вод­стве. Если необходимые реакции, например, синтез лекарственного вещества, протекают слишком медленно, их стремятся ускорить. Если же нежелательные реакции, например, разложение лекарственных веществ, коррозия оборудования, инструментов и т. п., протекают слишком быстро, то их необходимо замедлять. Ускорение или замедление реакций может быть достигнуто различными спо­собами: изменением концентрации реагентов, изменением параметров реакции (температура, концентрация реагентов и др.), применением катализа­то­ров или ингибиторов, а также одновременным воздействием всех или некоторых из перечисленных факторов.

Знание провизором-технологом законов химической кинетики позволяет добиваться наиболее высокой производительности аппаратов при получении синтетических лекарственных веществ, а также установления и продления сроков годности лекарственных препаратов.

В биологии и медицине законы химической кинетики дают возможность проникнуть в мир биохимических реакций, идущих в живом организме, разобраться во всех тонкостях их протекания, как на тканевом, так и на клеточном уровне. Именно кинетические методы были использованы для выяснения деталей таких сложных процессов, как, например, биосинтез белка, цикл трикарбоновых кислот и многие другие.

Лекарственные вещества, введённые в организм, претерпевают в нём различные химические превращения, преобразуясь в результате метаболизма в соединения с различной фармакологической и биологической ролями. Проникновение лекарственных веществ в организм и их поведение в нём, а также выявление промежуточных продуктов, оказывающих фармакологический эффект, изучается специальными медицинскими дисциплинами - фармакологией, фармакокинетикой и фармакодинамикой, широко использующими кинетические методы исследования.

Краткий исторический очерк

Первые систематические исследования скорости химических реакций выполнил Н.А.Мен­шут­кин в 70-х гг. XIX в. В 1884 г. Я.Вант-Гофф в общем виде сформулировал кинетические закономерности протекания простых моно-, би- и тримолекулярных реакций. Толчком к дальнейшему развитию химической кинетики послужило установление С.Аррениусом (1889) зависимости скорости простых реакций от температуры и роли в химических реакциях активных молекул. М.Боденштейн (1899) показал справедливость представлений Вант-Гоффа и Аррениуса для элементарных реакций в газовой фазе. Развитие этих представлений с использованием статистической физики и квантовой механики привело к созданию Г.Эйрингом и М.Поляни в 30-х гг. XX в. теории активированного комплекса. В конце XIX - начале XX вв. большое внимание уделялось изучению также и сложных реакций. Перекисная теория окисления Баха - Энглера (1897), учение о сопряжённых процессах окисления Лютера - Шилова (1903) установили важную роль в кинетике сложных реакций природы промежуточных веществ. Изучение промежуточных веществ было стимулировано открытием обычных (М.Боденштейн, 1913) и разветвлённых (Н.Н.Семенов, С.Хиншелвуд, 1920-е гг.) цепных реакций. Было установлено, что промежуточные вещества представляют собой, как правило, активные частицы - свободные атомы и радикалы, обладающие высокой реакционной способностью.



Copyright © 2024 Наука. Техника. Экономика. Литература. Юриспруденция.